Synthesis 2020; 52(15): 2245-2258
DOI: 10.1055/s-0039-1690881
paper
© Georg Thieme Verlag Stuttgart · New York

BX3-Mediated Intermolecular Formation of Functionalized 3-Halo-1H-indenes via Cascade Halo-Nazarov-Type Cyclization

Anupama Kumari
,
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India   Email: rfernand@chem.iitb.ac.in
› Author Affiliations
This work was supported by the Science and Engineering Research Board (SERB) New Delhi, Grant No. EMR/2017/000499.
Further Information

Publication History

Received: 31 January 2020

Accepted after revision: 10 March 2020

Publication Date:
06 April 2020 (online)

 


Abstract

A BX3-promoted, intermolecular regioselective synthesis of 3-halo-functionalized 1H-indenes from 4-oxo-4H-chromene-3-carb­aldehydes and alkynes has been developed. BX3 displays a dual role of Lewis acid catalyst and halide source for haloallyl cation formation for the intended halo-Nazarov-type cyclization. The overall transformation represents an efficient cascade annulation that employs readily available starting materials, inexpensive reagents and a convenient and mild reaction procedure to generate halo-functionalized indenes (45 examples). The reaction was also extended to 8-formylcoumarins to deliver coumarin-based 3-halo-1H-indenes in 79–95% yield (6 examples). The reaction involves conversion of the aldehyde into an sp3 carbon with two new C–C bonds and additionally a C–X bond is formed (X = halide).


#

Indenes[1] and chromones[2] are very promising targets and central structural units ubiquitous in many biologically active molecules. A hybrid displaying both these units might hold promise for resourceful biological activities. Combination of two different bioactive pharmacophores in a single molecule has been shown to possess better activity.[3] The Nazarov cyclization has been well explored since its discovery in the middle of the last century.[4] Traditionally, the reaction is based on cross-conjugated divinyl ketones undergoing ring closure to give the cyclopentenone or indanone products. Several natural products and valuable compounds have been synthesized employing this reaction.[4] [5] However, it is also associated with some limitations, like the difficulty to synthesize and handle dienone precursors, especially when terminal disubstituted vinyl groups are needed. Recently, there have been interesting reports on halo-Nazarov-type cyclizations to provide the haloindene and halocyclopentene products.[6] However, most of these reactions involved the generation of vinylhalo compounds that were then subjected to halo-Nazarov cyclization, thus involving two steps in the protocol.

The traditional 4π-electrocyclization of an oxy- or aza-arylallyl cation or -dienyl cation 1a (OH or NR2) would be slower, affecting the equilibrium between 1a and 1b (Scheme [1]). This can be attributed to the electron-releasing ability of oxygen or nitrogen to stabilize the cation, thereby decreasing its reactivity. Frontier and co-workers[6] have recently demonstrated that generation of a halo cation 2a (X = halide) would speed up the reaction delivering the useful vinylhalo compounds. By computational studies, it has been observed that the arylallyl cation cyclizations are thermodynamically disfavoured and endothermic by >15 kcal/mol, due to aromaticity loss.[6c] [7] However, the corresponding halo cation cyclizations were thermoneutral, despite aromaticity loss, and were predicted to be exothermic. Experimentally, the reactions occurred efficiently at 0 °C validating the computational data. Over the past decade, isolated examples of similar reactions have emerged, although these were considered as intramolecular Friedel–Crafts arylations.[8] The reaction now termed as ‘halo-Nazarov cyclization’ is underdeveloped,[6] [8] probably due to a lack of direct methods to prepare the intermediates of type 2a from suitable precursors. While the work of Frontier and co-workers[6] marks an excellent beginning, there exists immense potential for further development in this area, as the vinylhalo compounds are useful intermediates in various transition-metal-catalyzed­ coupling reactions.[6a] [b] [8b] [d] [9]

Zoom Image
Scheme 1 Oxy- and halo-Nazarov cyclization processes (LA = Lewis acid­)

Our venture into the halo-Nazarov cyclization came serendipitously. Lee and co-workers[10] recently reported the BF3·OEt2-promoted cyclization of chromenone-3-carbaldehydes 3 with terminal arylacetylenes 4 in CH3CN for the construction of 2,5-disubstituted 2-arylpyridines 5 (Scheme [2]). The nitrogen source for the pyridine moiety is derived from the solvent, CH3CN. We visualized to explore the outcome with internal alkynes, to result in the expected 2,3,5-trisubstituted pyridine 5′ that can be further subjected to an intramolecular oxa-Michael addition resulting in the fused chromenone–pyridine hybrid. The reaction of 3a with diphenylacetylene (4a) in CH3CN failed to deliver 2,3,5-trisubstituted pyridine 5′, even with excess BF3·OEt2 or under heating conditions. A change to the solvent mixture CH3CN/CH2Cl2 (1:1) furnished a new product, characterized to be a chromenone–3-indene incorporating the aryl ring, the alkyne and the aldehyde group of the chromenone with a further interesting incorporation of fluoride from BF3·OEt2 leading to the functionalized five-membered-ring compound 6aa (12%, Scheme [2]). The reaction in only CH2Cl2 provided 6aa in an improved yield of 21% and can be visualized as an intermolecular cascade halo-Nazarov-type cyclization with the incorporation of the vinyl halide group and differs in the substrates used by Frontier and co-workers[6] for similar cyclizations. Often the aryl vinyl ketone substrates for such reactions need to be synthesized with a heavy bias toward reactivity and the intended Nazarov cyclization becomes an intramolecular process. The present reaction being intermolecular and interesting in having the indene cyclopentene ring functionalized, the added vinylfluoro group, and the 4-chromenone moiety, we considered studying the scope and limitations of this cyclization reaction. It also holds the promise that a change of Lewis acid BF3·OEt2 could incorporate other halide groups in the products.

Zoom Image
Scheme 2 Strategies for 2-arylpyridines and haloindenes

Table 1 Optimization of the Halo-Nazarov Reaction Conditionsa

Entry

Acid (equiv)

Solvent

Temp

Time (h)

X

Yield (%)b

 1

BF3·OEt2 (1.0)

CH2Cl2

rt

 4

F

21

 2

BF3·OEt2 (1.0)

THF

rt

36

F

NR

 3

BF3·OEt2 (1.0)

DMF

rt

36

F

NR

 4

BF3·OEt2 (1.0)

DMSO

rt

22

F

NR

 5

BF3·OEt2 (1.0)

CH3CN

rt

 1

F

CM

 6

BF3·OEt2 (1.0)

DCE

rt

24

F

NR

 7

BF3·OEt2 (1.0)

benzene

rt

16

F

8c

 8

BF3·OEt2 (2.5)

CH2Cl2

rt

3.5

F

58

 9

BF3·OEt2 (3.0)

CH2Cl2

rt

 3.5

F

60

10

BF3·OEt2 (3.0)

CH2Cl2

reflux

 3.0

F

57

11

BF3·THF (2.5)

CH2Cl2

rt

 8

F

CM

12

HF–pyridine (2.5)

CH2Cl2

rt

 6

F

CM

13

BCl3 (2.5)

CH2Cl2

rt

5

Cl

87

14

BBr3 (2.5)

CH2Cl2

rt

5.5

Br

85

15

BF3·OEt2 (2.5)/PhI(OAc)2 (1.0)

CH2Cl2

rt

 8

I

CM

16

BCl3 (2.5)/I2 (1.0)

CH2Cl2

rt

24

I

NR

17

BCl3 (2.5)/KI (1.0)

CH2Cl2

rt

24

I

NR

a Reaction conditions: 3a (0.172 mmol), 4a (0.172 mmol), acid (1.0–3.0 equiv), solvent (2 mL), rt or reflux, 1–36 h.

b Isolated yield. NR = no reaction, CM = complex mixture.

c In place of halogen, solvent addition observed (X = Ph).

We screened various halide sources and available Lewis acids containing halides for the reaction of 3a and diphenylacetylene (4a) as model substrates with variation of solvent and temperature, as shown in Table [1]. Various solvents were initially screened with BF3·OEt2 (1.0 equiv) at room temperature (for full details, see the Supporting Information). Except CH2Cl2 (entry 1), other solvents were not compatible for this reaction (entries 2–6). In benzene, the reaction occurred with addition of a phenyl group (6, X = Ph, entry 7), in 8% yield. We considered raising the amount of BF3·OEt2 used (1.5–3.0 equiv), the yield of 6aa being increased with 2.5–3.0 equivalents (entries 8 and 9). There was no change in yield in carrying out the reaction at reflux in CH2Cl2 (entry 10). Other sources of fluoride like BF3·THF or HF–pyridine did not yield product 6aa (entries 11 and 12). We considered 2.5 equivalents of BF3·OEt2 to be optimal. Further, the reaction was mimicked for chlorine incorporation using various chloride sources (AlCl3, FeCl3, TiCl4 and BCl3). Except BCl3 (entry 13), other chloride sources were not successful (see the Supporting Information). The optimum requirement was 2.5 equivalents. Similarly, the use of BBr3 in 2.5 equivalents was optimum for bromide incorporation (entry 14). The reactions for iodine incorporation using various iodide sources in combination with BF3·OEt2 or BCl3 (entries 15–17) failed to deliver the iodine-incorporated products. This study revealed that BF3·OEt2, BCl3 or BBr3 (each 2.5 equiv) among the various halide sources in CH2Cl2 at room temperature are the optimum requirements. Among the three, the fluoride incorporation occurred in moderate yield in comparison to bromide and chloride.

Zoom Image
Scheme 3 Substrate scope for 3-fluoro-functionalized 1H-indene synthesis. Reagents and conditions: 3 (0.172 mmol), 4 (0.172 mmol), BF3·OEt2 (2.5 equiv), CH2Cl2 (2 mL), rt, 1.5–6.5 h. Isolated yields were recorded.

The scope and limitations of this method were next investigated on a series of substituted 4-oxo-4H-chromene-3-carbaldehydes 3 with diarylacetylenes 4 (Scheme [3]) using BF3·OEt2 for fluoride incorporation. Substrates 3 with a Me, F, NO2 or Br group reacted well with 4a giving the 3-fluoroindenes 6ab6ae in moderate yields. Compound 6ae gave suitable crystals for X-ray analysis,[11] unambiguously confirming the structure. The naphthalene-based substrates also reacted well to provide 6af and 6ag in 50% and 48% yield, respectively. The use of the unsymmetrical alkyne 1-(4-bromophenyl)-2-phenyl­acetylene gave 3-fluoroindene 6ah in 59% yield, with the unsubstituted benzene chemoselectively involved in indene formation.

We continued the scope of substrates for chloride incorporation using BCl3 (2.5 equiv), as shown in Scheme [4]. Substrates 3 with a NO2, Me, F or Br group reacted well with 4a giving the 3-chloroindenes 6bb6be in good yields (68–76%). Similarly, di-p-tolylacetylene reacted with various 4-oxo-4H-chromene-3-carbaldehydes 3 to deliver the 3-chloroindene compounds 6bf6bj in good to excellent yields (61–94%). The naphthalene-based substrates also reacted well to provide 6bk and 6bl in 96% and 76% yield, respectively. The unsymmetrical diarylalkyne 1-(4-methoxyphenyl)-2-phenylacetylene also worked well to regio- and chemoselectively provide the 3-chloroindenes 6bm6bo in up to 95% yield, in which the electron-rich methoxybenzene ring is chemoselectively involved in indene formation. Arylalkylalkynes (1-butyn-1-ylbenzene and 1-hexyn-1-ylbenzene) also reacted to give the 3-chloroindenes 6bp6bs in 80–93% yield. In these cases also, the benzene ring is involved in the annulation reaction. Compounds 6bb, 6bi and 6bm provided suitable crystals for X-ray analysis.[11]

Zoom Image
Scheme 4 Substrate scope for 3-chloro-functionalized 1H-indene synthesis. Reagents and conditions: 3 (0.172 mmol), 4 (0.172 mmol), BCl3 (2.5 equiv), CH2Cl2 (2 mL), rt, 1–7 h. Isolated yields were recorded.

We next examined BBr3, for bromine incorporation in the intermolecular cascade bromo-Nazarov indene formation (Scheme [5]). With 4a and with di-p-tolylacetylene, the reaction with various 4-oxo-4H-chromene-3-carbaldehydes 3 in the presence of BBr3 furnished the 3-bromo­indenes 6ca6cl in good yields (72–88%). The unsymmetrical alkyne 1-(4-bromophenyl)-2-phenylacetylene provided 3-bromoindene 6cm selectively, with the unsubstituted benzene ring undergoing the indene ring formation. This was further confirmed by X-ray analysis of 6cm.[11] Arylalkylalkynes (1-butyn-1-ylbenzene, 1-heptyn-1-ylbenzene and 1-hexyn-1-ylbenzene) also reacted to give 3-bromoindenes 6cn6cq in 80–85% yield. In the case of 4-phenylbut-3-yn-1-ol, reaction with 3a gave product 6cr (80% yield), with the hydroxyl group converted into a bromide with the additional 1.0 equivalent of BBr3. A reaction with 6.1 mmol of 3a (R = H, 1.1 g) delivered 6ca in 74% yield, indicating possible scale-up of the reaction (Scheme [5]).

Zoom Image
Scheme 5 Substrate scope for 3-bromo-functionalized 1H-indene synthesis­ and a gram-scale reaction. Reagents and conditions: 3 (0.172 mmol), 4 (0.172 mmol), BBr3 (2.5 equiv), CH2Cl2 (2 mL), rt, 2.5–8 h. Isolated yields were recorded. a BBr3 (3.5 equiv) used.

The present method was extended to 8-formylcoumarins 7, as shown in Scheme [6]. These, on reaction with diphenylacetylene (4a) or di-p-tolylacetylene, delivered the 3-chloro- or 3-bromo-functionalized 1H-indenes 8a8f in good to excellent yields (79–95%). Compound 8e gave suitable crystals for X-ray analysis, confirming the structure.[11]

Zoom Image
Scheme 6 Substrate scope for coumarin-based 3-halo-functionalized 1H-indene synthesis. Reagents and conditions: 7 (0.172 mmol), 4 (0.172 mmol), BX3 (2.5 equiv), CH2Cl2 (2 mL), rt, 4–11 h. Isolated yields were recorded.

We also considered exploring alkynes with an electron-withdrawing group and various other aldehydes to gain insight into the mechanism of the reaction (Scheme [7]). The reaction of 4-oxo-4H-chromene-3-carbaldehydes 3a, 3b or 3d with 1-(2-methoxyphenyl)-2-(4-nitrophenyl)acetylene (4f) in the presence of BCl3 or BBr3 failed to deliver the chloro- or bromoindene compounds. Similarly, the reaction of aldehyde 3a with phenylacetylene (9a) (terminal alkyne) in the presence of BF3·OEt2 did not yield the corresponding indene product. Most of the starting materials were recovered in all these cases. This indicated that the alkyne should be nucleophilic enough for reaction with the aldehyde. The reaction of various other aldehydes, like p-chlorobenzaldehyde (10a), cinnamaldehyde (10b), o-anisaldehyde (10c), salicylaldehyde (10d) and 3-oxocyclohex-1-ene-2-carb­aldehyde (10e), with diphenylacetylene (4a) in the presence of BF3·OEt2 or BBr3 gave either a complex mixture or no reaction, with the substrates being recovered unreacted. Comparison of 13C NMR and IR spectral values for the aldehyde carbonyl of 10e with that of chromonecarbaldehyde 3a was not conclusive for the reactivity difference. The reaction studied is substrate specific and at this stage only the chromone- and coumarincarbaldehydes react. It appears clear that simple aryl aldehydes do not react probably due to lack of a β-keto group that is required for complexation with the Lewis acid. Also, the chromone oxygen stabilizes the benzylic carbocation, as shown by intermediate 14′ in Scheme [8]. This oxygen is absent in 10e. The reaction of benzoylacetone (11) and 4a with BF3·OEt2 delivered the BF2 complex 12 in 60% yield, the structure of which was established by X-ray analysis.[11] Thus, the β-keto group in 4-oxo-4H-chromene-3-carbaldehydes 3 is necessary for the reaction apart from the chromone oxygen. It has also been observed in this work that chloride and bromide incorporation gave superior yields in comparison to fluoride (Schemes 4 and 5 vs Scheme [3]).

Zoom Image
Scheme 7 Reactivity of alkyne with an electron-withdrawing group on the aryl ring and scope of other aldehydes

Considering the selective reactivity of 4-oxo-4H-chromene-3-carbaldehydes and not other aldehydes in this reaction, we considered the plausible mechanism as shown in Scheme [8], with probable involvement of the chromone oxygen. Suitably placed neighbouring groups accelerating the reaction has been developed earlier.[12] Thus, coordination of Lewis acid BF3·OEt2 (or BCl3 or BBr3) with the aldehyde carbonyl initiates alkyne attack on the boron-complexed aldehyde 3a′, with fluoride attack on the alkyne, giving intermediate 13. Further generation of the fluoroallylic cation 14 triggers the halo-Nazarov-type cyclization. The chromone oxygen probably stabilizes the carbocation, generating the extended oxocarbenium ion 14′. Intramolecular aryl ring closure produces the vinylfluoroindene product 6aa. Terminal arylacetylenes may not be reactive as the intermediate cation before halide attack may not be stable or formed. This substrate bias is evident in the Nazarov cyclization being mostly explored with substituted vinyl bonds.

Zoom Image
Scheme 8 Plausible mechanism (F incorporation in 6aa is representative)

In summary, we have developed an efficient intermolecular halo-Nazarov-type cyclization of 4-oxo-4H-chromene-3-carbaldehydes and 1,2-disubstituted acetylenes in the presence of a halide source, BF3·OEt2, BCl3 or BBr3, which also acts as a Lewis acid to mediate the reaction, giving vinylhaloindenes (45 examples).[13] The aldehyde carbon of 4-oxo-4H-chromene-3-carbaldehydes is converted from sp2 into the sp3 carbon in the product by formation of two new C–C bonds. An additional C–X bond formed by incorporation of a halide into the cyclopentene ring is remarkable, generating the functionalized indene moiety. The reaction was also extended to 8-formylcoumarins to deliver coumarin-based 3-halo-1H-indenes in good to excellent yields (6 examples). The overall transformation represents an efficient intermolecular cascade halo-Nazarov-type cyclization strategy that employs readily available starting materials, inexpensive reagents and a convenient and mild reaction procedure to generate halo-functionalized indenes.

TLC was performed on EM 250 Kieselgel 60 F254 silica gel plates. The spots were visualized by staining with KMnO4 or by using a UV lamp. 1H and 13C NMR spectra were recorded with spectrometers operating at 400 or 500 and at 100 or 125 MHz for proton and carbon nuclei, respectively. The chemical shifts are based on the TMS peak at δ = 0.00 pm for proton NMR and the CDCl3 peak at δ = 77.00 ppm (t) for carbon NMR. IR spectra were obtained on a FT-IR spectrophotometer. HRMS (ESI-TOF) spectra were recorded using positive electrospray ionization by the TOF method. CH2Cl2 was dried by refluxing over P2O5 and distillation on calcium hydride. THF and benzene were dried over sodium. All chromenone-3-carbaldehydes (except 3-formylbenzo[h]chromone that was prepared[14]) were obtained from Aldrich Chemical Co. All Lewis acids, phenylacetylene and 1-butyn-1-ylbenzene are commercial reagents and were used as such without further purification. Other alkynes were prepared using established literature protocols.[15] Room temperature = 32–35 °C.


#

3-(2-Aryl-3-fluoro-1H-inden-1-yl)-4H-chromen-4-ones 6aa–6ah; General Procedure

To a mixture of carbaldehyde 3 (0.172 mmol, 1.0 equiv) and alkyne 4 (0.172 mmol, 1.0 equiv) in CH2Cl2 (2 mL) was added BF3·OEt2 (0.43 mmol, 2.5 equiv) at room temperature. The mixture was stirred for the required time (monitored by TLC). After completion of the reaction, it was quenched with a few drops of sat. Na2S2O3 solution. The solvent was removed through vacuum and the residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 4:1) to afford 6aa6ah.


#

3-(3-Fluoro-2-phenyl-1H-inden-1-yl)-4H-chromen-4-one (6aa)

Yield: 35.4 mg (58%, reaction time = 3.5 h); white solid; mp 182–184 °C.

IR (CHCl3): 3058, 2850, 1648, 1617, 1465, 1350, 1220, 1176, 696, 594 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.38 (t, J = 6.1 Hz, 1 H), 7.66–7.61 (m, 3 H), 7.53 (t, J = 5.7 Hz, 1 H), 7.47–7.43 (m, 2 H), 7.39–7.32 (m, 5 H), 7.27–7.21 (m, 2 H), 5.63 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.8, 157.3 (d, 1 J C-F = 248.4 Hz), 156.0, 153.0, 144.5, 135.5, 135.3, 133.7, 131.3 (d, 4 J C-F = 4.1 Hz), 128.8, 128.6, 127.7 (d, 3 J C-F = 6.2 Hz), 127.4, 127.2, 125.9, 125.2, 124.0, 123.8, 122.7, 119.8, 118.1 (d, 2 J C-F = 18.9 Hz), 40.7.

19F NMR (470 MHz, CDCl3): δ = –128.5.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C24H16FO2: 355.1129; found: 355.1130.


#

3-(3-Fluoro-2-phenyl-1H-inden-1-yl)-6-methyl-4H-chromen-4-one (6ab)

Yield: 33 mg (52%, reaction time = 2 h); white solid; mp 162–164 °C.

IR (CHCl3): 3056, 2924, 1642, 1618, 1484, 1376, 1319, 1161, 911, 812, 693, 544 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.14 (s, 1 H), 7.60 (d, J = 8.1 Hz, 2 H), 7.51 (d, J = 7.3 Hz, 1 H), 7.45 (d, J = 7.5 Hz, 2 H), 7.36–7.32 (m, 4 H), 7.24–7.19 (m, 3 H), 5.63 (d, J = 5.4 Hz, 1 H), 2.49 (s, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 177.8, 157.1 (d, 1 J C-F = 280.2 Hz), 154.6, 152.9, 144.6 (d, 3 J C-F = 6.9 Hz), 135.5, 135.3, 134.9, 131.4, 131.38, 128.8, 127.5 (d, 3 J C-F = 6.5 Hz), 127.4, 127.2, 125.2, 124.1, 123.6, 122.4, 119.9, 117.98 (d, 4 J C-F = 2.5 Hz), 117.9, 40.7, 21.0.

19F NMR (470 MHz, CDCl3): δ = –128.7.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C25H17FNaO2: 391.1105; found: 391.1106.


#

6-Fluoro-3-(3-fluoro-2-phenyl-1H-inden-1-yl)-4H-chromen-4-one (6ac)

Yield: 34 mg (53%, reaction time = 3 h); white solid; mp 220–222 °C.

IR (CHCl3): 2932, 2857, 1637, 1625, 1476, 1457, 1049, 910, 610 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.98 (dd, J = 7.9, 2.6 Hz, 1 H), 7.60–7.58 (m, 2 H), 7.51–7.45 (m, 2 H), 7.39 (s, 1 H), 7.38–7.33 (m, 5 H), 7.23 (t, J = 7.3 Hz, 2 H), 5.58 (d, J = 5.5 Hz, 1 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 177.1, 159.7 (d, 1 J C-F = 248.6 Hz), 155.8, 153.2, 152.6, 144.4 (d, 3 J C-F = 7.3 Hz), 135.5, 135.3, 131.3 (d, 4 J C-F = 4.9 Hz), 128.8, 127.7 (d, 3 J C-F = 6.4 Hz), 127.6, 127.3, 124.9 (d, 3 J C-F = 7.5 Hz), 124.0 (d, 4 J C-F = 2.5 Hz), 122.2 (d, 4 J C-F = 4.6 Hz), 121.9, 120.3 (d, 3 J C-F = 8.1 Hz), 119.7, 118.1 (d, 4 J C-F = 2.3 Hz), 110.8 (d, 2 J C-F = 23.9 Hz), 40.7.

19F NMR (470 MHz, CDCl3): δ = –114.8, –128.5.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C24H15F2O2: 373.1035; found: 373.1042.


#

3-(3-Fluoro-2-phenyl-1H-inden-1-yl)-6-nitro-4H-chromen-4-one (6ad)

Yield: 35 mg (51%, reaction time = 6.5 h); white solid; mp 189–191 °C.

IR (CHCl3): 1652, 1632, 1531, 1467, 1345, 826, 695 cm–1.

1H NMR (500 MHz, CDCl3): δ = 9.23 (d, J = 2.4 Hz, 1 H), 8.46 (dd, J = 9.2, 2.3 Hz, 1 H), 7.58 (d, J = 8.3 Hz, 2 H), 7.50–7.45 (m, 4 H), 7.39–7.34 (m, 3 H), 7.26–7.23 (m, 2 H), 5.58 (d, J = 5.3 Hz, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 176.5, 159.0, 157.3 (d, 1 J C-F = 280.4 Hz), 153.3, 144.8, 143.7, 135.4 (d, 2 J C-F = 24.8 Hz), 131.1, 128.9, 128.0, 127.8, 127.7, 127.6, 127.5, 124.0, 123.9, 123.8, 122.8, 120.0, 119.3, 118.2, 40.6.

19F NMR (470 MHz, CDCl3): δ = –127.9.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C24H14FNNaO4: 422.0799; found: 422.0788.


#

6-Bromo-3-(3-fluoro-2-phenyl-1H-inden-1-yl)-4H-chromen-4-one (6ae)

Yield: 37.2 mg (50%, reaction time = 1.5 h); white solid; mp 156–158 °C.

IR (CHCl3): 2923, 2857, 1676, 1641, 1605, 1461, 1376, 910, 815, 734, 693 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.48 (d, J = 2.3 Hz, 1 H), 7.71 (dd, J = 8.8, 2.5 Hz, 1 H), 7.58 (d, J = 7.3 Hz, 2 H), 7.49–7.45 (m, 2 H), 7.38–7.33 (m, 4 H), 7.24–7.21 (m, 3 H), 5.58 (d, J = 5.7 Hz, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 176.5, 157.2 (d, 1 J C-F = 279.2 Hz), 155.1, 153.1, 144.3 (d, 3 J C-F = 7.2 Hz), 136.7, 135.5, 135.3, 131.3 (d, 4 J C-F = 4.9 Hz), 128.8, 128.6, 127.7 (d, 3 J C-F = 6.4 Hz), 127.6, 127.4, 125.2, 124.0, 123.1, 120.1, 119.7, 118.7, 118.1, 40.7.

19F NMR (470 MHz, CDCl3): δ = –128.3.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C24H14BrFNaO2: 457.0036; found: 457.0035.


#

2-(3-Fluoro-2-phenyl-1H-inden-1-yl)-1H-benzo[f]chromen-1-one (6af)

Yield: 34.8 mg (50%, reaction time = 6 h); white solid; mp 185–187 °C.

IR (CHCl3): 2926, 2855, 1642, 1609, 1516, 1441, 1375, 910, 820, 732, 693, 607 cm–1.

1H NMR (400 MHz, CDCl3): δ = 10.26 (d, J = 8.4 Hz, 1 H), 8.04 (d, J = 8.9 Hz, 1 H), 7.92 (d, J = 8.0 Hz, 1 H), 7.85 (t, J = 7.8 Hz, 1 H), 7.69–7.60 (m, 4 H), 7.48–7.44 (m, 2 H), 7.38–7.33 (m, 4 H), 7.21 (t, J = 7.5 Hz, 2 H), 5.78 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 179.2, 157.5, 157.2 (d, 1 J C-F = 279.3 Hz), 150.4, 144.6, 135.5, 135.3, 131.4, 130.6, 130.5, 129.3, 128.8, 128.3, 127.7 (d, 3 J C-F = 6.3 Hz), 127.4, 127.2, 127.1, 126.7, 125.3, 124.1, 119.9, 118.0, 117.5, 117.1, 40.8.

19F NMR (470 MHz, CDCl3): δ = –128.4.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C28H17FNaO2: 427.1105; found: 427.1098.


#

3-(3-Fluoro-2-phenyl-1H-inden-1-yl)-4H-benzo[h]chromen-4-one (6ag)

Yield: 33.4 mg (48%, reaction time = 6 h); white solid; mp 138–140 °C.

IR (CHCl3): 1683, 1642, 1601, 1445, 1380, 910, 694, 668 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.30–8.26 (m, 2 H), 7.90 (d, J = 8.1 Hz, 1 H), 7.80 (d, J = 8.7 Hz, 1 H), 7.68–7.64 (m, 3 H), 7.60–7.57 (m, 3 H), 7.47 (d, J = 7.4 Hz, 1 H), 7.37–7.34 (m, 3 H), 7.24–7.20 (m, 2 H), 5.70 (d, J = 5.3 Hz, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.5, 157.3 (d, 1 J C-F = 279.9 Hz), 153.9, 152.1, 144.5, 135.7, 135.4 (d, 2 J C-F = 25.7 Hz), 131.4, 129.4, 128.8, 128.7, 128.0, 127.7 (d, 3 J C-F = 6.2 Hz), 127.5, 127.3, 127.2, 126.7, 125.5, 124.2 (d, 2 J C-F = 13.5 Hz), 123.9, 122.1, 120.8, 120.2, 119.8, 118.0, 40.8.

19F NMR (470 MHz, CDCl3): δ = –128.0.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C28H17FNaO2: 427.1105; found: 427.1100.


#

3-(2-(4-Bromophenyl)-3-fluoro-1H-inden-1-yl)-4H-chromen-4-one (6ah)

Yield: 44 mg (59%, reaction time = 2 h); white solid; mp 103–105 °C.

IR (CHCl3): 2945, 2833, 1686, 1640, 1608, 1465, 1395, 1028, 824, 690 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.15 (d, J = 7.1 Hz, 1 H), 7.45 (dt, J = 7.7, 1.7 Hz, 1 H), 7.29–7.24 (m, 6 H), 7.16–7.13 (m, 3 H), 7.06 (s, 1 H), 7.03 (dt, J = 7.5, 1.0 Hz, 1 H), 5.38 (s, 1 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 177.7, 157.6 (d, 1 J C-F = 262.5 Hz), 156.2, 153.0, 144.5, 135.3, 135.0, 133.8, 132.0, 131.6, 130.3, 129.2 (d, 3 J C-F = 6.3 Hz), 127.6, 126.0, 125.4, 124.1, 123.8, 122.4, 121.2, 119.0, 118.2, 40.6.

19F NMR (470 MHz, CDCl3): δ = –127.5.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C24H14BrFNaO2: 455.0053; found: 455.0056.


#

3-(2-Aryl-3-chloro-1H-inden-1-yl)-4H-chromen-4-ones 6ba–6bs; General Procedure

Compounds 6ba6bs were prepared by following a similar procedure as described for compounds 6aa6ah, using BCl3 (2.5 equiv) instead of BF3·OEt2 and 0.172 mmol each of 3 and 4.


#

3-(3-Chloro-2-phenyl-1H-inden-1-yl)-4H-chromen-4-one (6ba)

Yield: 55.5 mg (87%, reaction time = 5 h); white semisolid.

IR (CHCl3): 3057, 2923, 2850, 1650, 1617, 1465, 1349, 1220, 912, 736, 701, 592 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.32 (d, J = 7.7 Hz, 1 H), 7.78 (d, J = 7.5 Hz, 2 H), 7.60 (dt, J = 6.9, 1.6 Hz, 1 H), 7.55 (d, J = 7.6 Hz, 1 H), 7.50 (d, J = 7.4 Hz, 1 H), 7.40–7.34 (m, 4 H), 7.32 (s, 1 H), 7.30–7.27 (m, 2 H), 7.24–7.22 (m, 1 H), 5.80 (s, 1 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 177.4, 156.2, 153.2, 144.9, 141.4, 139.9, 133.6, 132.7, 128.9, 128.6, 128.0, 127.6, 127.0, 125.9, 125.2, 123.8, 123.5, 122.6, 119.6, 118.1, 45.2.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C24H15ClNaO2: 393.0653; found: 393.0650.


#

3-(3-Chloro-2-phenyl-1H-inden-1-yl)-6-nitro-4H-chromen-4-one (6bb)

Yield: 51.5 mg (72%, reaction time = 6 h); white solid; mp 73–74 °C.

IR (CHCl3): 2923, 2853, 1651, 1629, 1465, 1345, 911, 746, 593 cm–1.

1H NMR (500 MHz, CDCl3): δ = 9.18 (d, J = 2.5 Hz, 1 H), 8.44 (dd, J = 9.2, 2.7 Hz, 1 H), 7.74 (d, J = 7.6 Hz, 2 H), 7.56 (d, J = 7.6 Hz, 1 H), 7.46 (d, J = 8.9 Hz, 2 H), 7.42–7.37 (m, 4 H), 7.30–7.22 (m, 2 H), 5.74 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 176.1, 158.9, 153.5, 144.8, 144.1, 141.5, 139.3, 132.5, 129.5, 128.7, 128.5, 128.2, 127.93, 127.9, 127.2, 123.8, 123.7, 123.4, 122.8, 120.0, 119.9, 45.1.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C24H14ClNNaO4: 438.0504; found: 438.0501.


#

3-(3-Chloro-2-phenyl-1H-inden-1-yl)-6-methyl-4H-chromen-4-one (6bc)

Yield: 49.6 mg (75%, reaction time = 2 h); white solid; mp 140–142 °C.

IR (CHCl3): 3057, 2924, 2853, 1641, 1622, 1483, 1319, 1160, 910, 748, 695 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.10 (s, 1 H), 7.76 (d, J = 6.9 Hz, 2 H), 7.54 (d, J = 7.5 Hz, 1 H), 7.49–7.48 (m, 1 H), 7.42–7.35 (m, 4 H), 7.29 (s, 1 H), 7.27–7.23 (m, 2 H), 7.22–7.19 (m, 1 H), 5.81 (s, 1 H), 2.46 (s, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.5, 154.5, 153.1, 145.1, 141.4, 140.0, 135.2, 134.9, 132.8, 128.9, 128.61, 128.6, 128.0, 127.5, 127.0, 125.2, 123.52, 123.5, 122.4, 119.6, 117.9, 45.3, 20.9.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C25H17ClNaO2: 407.0809; found: 407.0811.


#

3-(3-Chloro-2-phenyl-1H-inden-1-yl)-6-fluoro-4H-chromen-4-one (6bd)

Yield: 50.7 mg (76%, reaction time = 1 h); white solid; mp 183–186 °C.

IR (CHCl3): 3057, 2922, 2850, 1635, 1617, 1476, 1265, 1129, 817, 725, 509 cm–1.

1H NMR (500 MHz, CDCl3): δ = 7.94 (dd, J = 7.9, 2.4 Hz, 1 H), 7.74 (d, J = 7.4 Hz, 2 H), 7.55 (d, J = 7.6 Hz, 1 H), 7.47 (d, J = 7.4 Hz, 1 H), 7.41–7.35 (m, 3 H), 7.34–7.31 (m, 3 H), 7.28–7.22 (m, 2 H), 5.76 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 176.8, 159.6 (d, 1 J C-F = 247.3 Hz), 153.4, 152.5, 144.8, 141.4, 139.7, 132.7, 129.1, 128.6 (d, 3 J C-F = 6.3 Hz), 128.1, 127.7, 127.1, 124.91, 124.9, 123.5, 122.1 (d, 3 J C-F = 5.5 Hz), 121.9, 120.3 (d, 3 J C-F = 8.1 Hz), 119.7, 110.7 (d, 2 J C-F = 23.6 Hz), 45.2.

19F NMR (470 MHz, CDCl3): δ = –114.8.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C24H14ClFNaO2: 411.0559; found: 411.0551.


#

6-Bromo-3-(3-chloro-2-phenyl-1H-inden-1-yl)-4H-chromen-4-one (6be)

Yield: 52.6 mg (68%, reaction time = 1.5 h); white solid; mp 88–90 °C.

IR (CHCl3): 3066, 2925, 1641, 1604, 1461, 1312, 1266, 1146, 908, 732, 697, 595 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.43 (s, 1 H), 7.75 (d, J = 7.7 Hz, 2 H), 7.67 (dd, J = 8.7, 1.7 Hz, 1 H), 7.55 (d, J = 7.5 Hz, 1 H), 7.47 (d, J = 7.4 Hz, 1 H), 7.41–7.36 (m, 3 H), 7.31–7.28 (m, 2 H), 7.24–7.23 (m, 1 H), 7.18 (d, J = 8.8 Hz, 1 H), 5.76 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 176.1, 154.9, 153.3, 144.6, 141.4, 139.6, 136.6, 132.6, 129.1, 128.6, 128.5, 128.1, 127.7, 127.1, 125.0, 123.4, 122.9, 120.0, 119.7, 118.6, 45.2.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C24H15BrClO2: 448.9938; found: 448.9936.


#

3-(3-Chloro-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-4H-chromen-4-one (6bf)

Yield: 64.5 mg (94%, reaction time = 1.5 h); white solid; mp 221–224 °C.

IR (CHCl3): 2921, 2856, 1633, 1610, 1466, 1354, 1164, 817, 601 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.34 (d, J = 7.8 Hz, 1 H), 7.66–7.60 (m, 3 H), 7.44–7.39 (m, 2 H), 7.32–7.29 (m, 3 H), 7.19–7.16 (m, 3 H), 5.74 (s, 1 H), 2.34 (s, 3 H), 2.32 (s, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.6, 156.2, 153.3, 145.1, 139.0, 138.8, 137.8, 137.0, 133.6, 130.0, 129.3, 128.4, 128.3, 126.0, 125.2, 124.3, 123.8, 123.0, 119.2, 118.1, 44.9, 21.5, 21.2.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C26H20ClO2: 399.1146; found: 399.1145.


#

3-(3-Chloro-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-6-methyl-4H-chromen-4-one (6bg)

Yield: 65.3 mg (92%, reaction time = 1 h); white solid; mp 233–236 °C.

IR (CHCl3): 2920, 2881, 1642, 1624, 1509, 1483, 1320, 1167, 818, 726, 508 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.12 (s, 1 H), 7.66 (d, J = 8.2 Hz, 2 H), 7.43–7.39 (m, 2 H), 7.31–7.29 (m, 2 H), 7.18 (dd, J = 14.9, 8.4 Hz, 4 H), 5.75 (s, 1 H), 2.47 (s, 3 H), 2.34 (s, 3 H), 2.32 (s, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.6, 154.5, 153.1, 145.2, 138.9, 138.8, 137.7, 136.9, 135.1, 134.8, 130.0, 129.2, 128.4, 128.2, 128.1, 125.2, 124.2, 123.5, 122.7, 119.1, 117.8, 44.9, 21.5, 21.2, 20.9.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C27H22ClO2: 413.1303; found: 413.1308.


#

3-(3-Chloro-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-6-fluoro-4H-chromen-4-one (6bh)

Yield: 43.7 mg (61%, reaction time = 2.5 h); white solid; mp 155–158 °C.

IR (CHCl3): 2912, 1636, 1626, 1613, 1478, 1326, 964, 816, 725, 603, 508 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.95 (dd, J = 8.1, 2.6 Hz, 1 H), 7.63 (d, J = 7.1 Hz, 2 H), 7.40 (d, J = 7.3 Hz, 1 H), 7.37–7.29 (m, 3 H), 7.28 (s, 1 H), 7.19–7.16 (m, 3 H), 5.70 (s, 1 H), 2.34 (s, 3 H), 2.32 (s, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 176.9, 159.5 (d, 1 J C-F = 247.5 Hz), 153.5, 152.5, 144.9, 139.0, 138.6, 137.9, 137.1, 129.9, 129.3, 128.4, 128.36, 124.9 (d, 3 J C-F = 7.6 Hz), 124.2, 122.5, 122.0, 121.8, 120.3 (d, 3 J C-F = 8.1 Hz), 119.3, 110.8 (d, 2 J C-F = 23.8 Hz), 44.9, 21.5, 21.2.

19F NMR (470 MHz, CDCl3): δ = –114.9.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C26H19ClFO2: 417.1052; found: 417.1054.


#

6-Bromo-3-(3-chloro-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-4H-chromen-4-one (6bi)

Yield: 62.5 mg (76%, reaction time = 1.5 h); white solid; mp 218–220 °C.

IR (CHCl3): 2920, 1642, 1604, 1462, 1437, 1335, 1313, 1267, 819, 733, 598 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.45 (d, J = 2.5 Hz, 1 H), 7.69 (dd, J = 8.9, 2.4 Hz, 1 H), 7.62 (d, J = 8.2 Hz, 2 H), 7.40 (d, J = 7.7 Hz, 1 H), 7.31 (s, 1 H), 7.26 (s, 1 H), 7.22–7.16 (m, 4 H), 5.69 (s, 1 H), 2.34 (s, 3 H), 2.32 (s, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 176.3, 155.0, 153.4, 144.8, 139.0, 138.5, 137.9, 137.1, 136.6, 129.9, 129.4, 128.6, 128.43, 128.4, 125.1, 124.2, 123.3, 120.1, 119.3, 118.6, 44.9, 21.5, 21.2.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C26H19BrClO2: 477.0251; found: 477.0251.


#

3-(3-Chloro-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-6-nitro-4H-chromen-4-one (6bj)

Yield: 50.4 mg (66%, reaction time = 1.5 h); white solid; mp 230–232 °C.

IR (CHCl3): 2925, 2857, 1641, 1629, 1529, 1464, 1341, 1263, 814, 690, 593 cm–1.

1H NMR (400 MHz, CDCl3): δ = 9.19 (d, J = 2.6 Hz, 1 H), 8.43 (dd, J = 6.5, 2.9 Hz, 1 H), 7.62 (d, J = 8.1 Hz, 2 H), 7.46 (d, J = 9.2 Hz, 1 H), 7.40 (d, J = 7.7 Hz, 1 H), 7.37 (s, 1 H), 7.27 (s, 1 H), 7.21–7.17 (m, 3 H), 5.68 (s, 1 H), 2.35 (s, 3 H), 2.33 (s, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 176.3, 159.0, 153.5, 144.7, 144.3, 140.0, 138.12, 138.1, 137.3, 129.7, 129.4, 128.8, 128.6, 128.3, 127.9, 124.2, 123.8, 122.9, 119.9, 119.4, 44.8, 21.5, 21.3.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C26H19ClNO4: 444.0997; found: 444.0995.


#

3-(3-Chloro-2-phenyl-1H-inden-1-yl)-4H-benzo[h]chromen-4-one (6bk)

Yield: 69.5 mg (96%, reaction time = 2.5 h); white solid; mp 80–84 °C.

IR (CHCl3): 3061, 2925, 2850, 1642, 1462, 1400, 1265, 1156, 698, 583 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.25 (dd, J = 8.5, 4.5 Hz, 2 H), 7.88 (d, J = 8.1 Hz, 1 H), 7.81 (d, J = 7.6 Hz, 2 H), 7.77 (d, J = 8.7 Hz, 1 H), 7.65 (t, J = 7.6 Hz, 1 H), 7.58–7.52 (m, 4 H), 7.41–7.36 (m, 3 H), 7.27–7.26 (m, 1 H), 7.24–7.22 (m, 1 H), 5.87 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.2, 153.8, 152.3, 144.9, 141.5, 139.9, 135.7, 134.9, 132.8, 129.4, 129.0, 128.6, 128.03, 128.0, 127.6, 127.13, 127.1, 125.4, 124.2, 123.9, 123.6, 122.1, 120.8, 120.1, 119.7, 45.3.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C28H18ClO2: 421.0990; found: 421.0985.


#

3-(3-Chloro-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-4H-benzo[h]-chromen-4-one (6bl)

Yield: 58.7 mg (76%, reaction time = 1 h); white solid; mp 223–226 °C.

IR (CHCl3): 2983, 2928, 2850, 1637, 1625, 1444, 1415, 1374, 1241, 1047, 814, 639 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.25 (t, J = 8.5 Hz, 2 H), 7.88 (d, J = 8.1 Hz, 1 H), 7.77 (d, J = 78.8 Hz, 1 H), 7.69 (d, J = 8.2 Hz, 2 H), 7.67–7.62 (m, 1 H), 7.56 (dt, J = 7.1, 0.9 Hz, 1 H), 7.50 (s, 1 H), 7.42 (d, J = 7.7 Hz, 1 H), 7.35 (s, 1 H), 7.20–7.17 (m, 3 H), 5.81 (s, 1 H), 2.34 (s, 3 H), 2.30 (s, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 177.3, 153.8, 152.4, 145.1, 139.0, 138.7, 137.8, 137.0, 135.7, 130.0, 129.33, 129.3, 128.4, 128.3, 128.0, 127.1, 125.4, 124.5, 124.3, 123.9, 122.1, 120.9, 120.1, 119.2, 45.0, 21.5, 21.2.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C30H22ClO2: 449.1303; found: 449.1297.


#

3-(3-Chloro-6-methoxy-2-phenyl-1H-inden-1-yl)-4H-chromen-4-one (6bm)

Yield: 65.5 mg (95%, reaction time = 7 h); white solid; mp 83–86 °C.

IR (CHCl3): 3003, 2955, 2833, 1638, 1622, 1484, 1320, 1285, 1031, 817, 695, 609 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.32 (d, J = 6.7 Hz, 1 H), 7.74 (d, J = 7.3 Hz, 2 H), 7.61 (dt, J = 7.7, 1.6 Hz, 1 H), 7.44–7.41 (m, 2 H), 7.39–7.34 (m, 3 H), 7.30 (d, J = 8.4 Hz, 1 H), 7.25–7.22 (m, 1 H), 7.08 (d, J = 1.6 Hz, 1 H), 6.93 (dd, J = 8.4, 2.2 Hz, 1 H), 5.76 (s, 1 H), 3.78 (s, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 177.7, 159.8, 156.4, 153.6, 147.0, 137.8, 134.6, 133.8, 133.2, 128.8, 127.8, 126.1, 125.4, 124.0, 123.0, 120.5, 118.3, 113.7, 109.8, 55.8, 45.3.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C25H17ClNaO3: 423.0758; found: 423.0754.


#

3-(3-Chloro-6-methoxy-2-phenyl-1H-inden-1-yl)-6-methyl-4H-chromen-4-one (6bn)

Yield: 59.2 mg (83%, reaction time = 6 h); white solid; mp 93–95 °C.

IR (CHCl3): 3006, 2925, 2833, 1639, 1618, 1444, 1285, 1032, 817, 695, 543 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.09 (s, 1 H), 7.73 (d, J = 7.5 Hz, 2 H), 7.42 (d, J = 8.4 Hz, 2 H), 7.35 (t, J = 7.9 Hz, 2 H), 7.32 (s, 1 H), 7.24 (d, J = 7.4 Hz, 1 H), 7.21 (d, J = 8.5 Hz, 1 H), 7.07 (d, J = 1.6 Hz, 1 H), 6.92 (dd, J = 8.4, 2.3 Hz, 1 H), 5.76 (s, 1 H), 3.78 (s, 3 H), 2.46 (s, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.5, 159.6, 154.5, 153.3, 147.0, 137.7, 135.2, 134.9, 134.4, 133.0, 128.5, 128.3, 127.6, 125.2, 123.5, 122.6, 120.3, 117.9, 113.6, 109.5, 55.6, 45.1, 20.9.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C26H19ClNaO3: 437.0915; found: 437.0902.


#

3-(3-Chloro-6-methoxy-2-phenyl-1H-inden-1-yl)-6-fluoro-4H-chromen-4-one (6bo)

Yield: 68.4 mg (95%, reaction time = 6 h); white solid; mp 165–168 °C.

IR (CHCl3): 3067, 2925, 2844, 1634, 1612, 1479, 1454, 1286, 1029, 829, 688, 558 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.94 (dd, J = 8.4, 2.2 Hz, 1 H), 7.72 (d, J = 7.5 Hz, 2 H), 7.43 (d, J = 8.4 Hz, 1 H), 7.38–7.32 (m, 5 H), 7.24–7.22 (m, 1 H), 7.06 (s, 1 H), 6.93 (dd, J = 8.4, 2.0 Hz, 1 H), 5.72 (s, 1 H), 3.78 (s, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 176.8, 159.6, 159.5 (d, 1 J C-F = 247.3 Hz), 153.6, 152.5, 146.6, 137.4, 134.4, 132.9, 128.8, 128.5 (d, 2 J C-F = 27.8 Hz), 127.7, 124.9, 122.3, 122.1, 121.8, 120.4, 120.3 (d, 3 J C-F = 8.3 Hz), 113.6, 110.7 (d, 2 J C-F = 23.9 Hz), 109.6, 55.6, 45.0.

19F NMR (470 MHz, CDCl3): δ = –114.8.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C25H16ClFNaO3: 441.0664; found: 441.0657.


#

3-(3-Chloro-2-ethyl-1H-inden-1-yl)-4H-chromen-4-one (6bp)

Yield: 51.6 mg (93%, reaction time = 4 h); white semisolid.

IR (CHCl3): 2964, 2927, 2856, 1643, 1611, 1466, 1349, 1143, 724, 670 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.32 (d, J = 7.8 Hz, 1 H), 7.67 (dt, J = 7.7, 1.7 Hz, 1 H), 7.47–7.39 (m, 3 H), 7.36–7.31 (m, 3 H), 7.18 (dt, J = 6.9, 1.2 Hz, 1 H), 5.18 (s, 1 H), 2.74 (sextet, J = 7.5 Hz, 1 H), 2.20 (sextet, J = 7.4 Hz, 1 H), 1.14 (t, J = 7.5 Hz, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 177.3, 156.4, 152.9, 145.8, 144.8, 141.7, 133.7, 127.8, 127.3, 126.0, 126.0, 125.3, 123.8, 123.3, 122.3, 118.8, 118.1, 44.5, 20.0, 13.2.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C20H15ClNaO2: 345.0653; found: 345.0655.


#

3-(3-Chloro-2-ethyl-1H-inden-1-yl)-6-fluoro-4H-chromen-4-one (6bq)

Yield: 48.7 mg (83%, reaction time = 3 h); white solid; mp 121–123 °C.

IR (CHCl3): 3071, 2970, 2934, 1646, 1479, 1319, 1264, 1175, 960, 824, 722, 600, 555 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.94 (d, J = 6.0 Hz, 1 H), 7.45–7.37 (m, 3 H), 7.36–7.31 (m, 3 H), 7.18 (dt, J = 7.5, 1.0 Hz, 1 H), 5.15 (s, 1 H), 2.74 (sextet, J = 7.1 Hz, 1 H), 2.19 (sextet, J = 7.4 Hz, 1 H), 1.14 (t, J = 7.6 Hz, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 176.6, 159.7 (d, 1 J C-F = 247.2 Hz), 153.1, 152.6, 145.5, 144.5, 141.6, 128.0, 127.4, 126.0, 124.9 (d, 3 J C-F = 7.3 Hz), 123.2, 122.1, 121.8 (d, 3 J C-F = 6.9 Hz), 120.3 (d, 3 J C-F = 8.1 Hz), 118.8, 110.8 (d, 2 J C-F = 23.7 Hz), 44.6, 20.0, 13.2.

19F NMR (470 MHz, CDCl3): δ = –114.7.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C20H14ClFNaO2: 363.0559; found: 363.0556.


#

3-(2-Butyl-3-chloro-1H-inden-1-yl)-4H-chromen-4-one (6br)

Yield: 50.7 mg (84%, reaction time = 5 h); pale yellow oil.

IR (CHCl3): 3068, 2929, 2858, 1647, 1480, 1318, 1157, 822, 723, 600 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.31 (d, J = 7.5 Hz, 1 H), 7.69–7.66 (m, 1 H), 7.46–7.39 (m, 4 H), 7.35–7.33 (m, 2 H), 7.17 (t, J = 7.5 Hz, 1 H), 5.16 (s, 1 H), 2.71 (sextet, J = 7.9 Hz, 1 H), 2.17 (septet, J = 5.5 Hz, 1 H), 1.56–1.46 (m, 2 H), 1.37–1.28 (m, 2 H), 0.89 (t, J = 7.3 Hz, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.3, 156.4, 152.9, 145.0, 144.5, 141.6, 133.7, 128.5, 127.3, 126.1, 126.0, 125.3, 123.9, 123.3, 122.4, 118.8, 118.2, 44.9, 30.8, 26.4, 22.5, 13.8.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C22H19ClNaO2: 373.0966; found: 373.0970.


#

3-(2-Butyl-3-chloro-1H-inden-1-yl)-6-fluoro-4H-chromen-4-one (6bs)

Yield: 50.8 mg (80%, reaction time = 6 h); pale yellow oil.

IR (CHCl3): 3067, 2932, 2857, 1645, 1481, 1459, 1315, 1159, 817, 722, 600 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.94 (d, J = 7.2 Hz, 1 H), 7.44–7.38 (m, 3 H), 7.36–7.31 (m, 3 H), 7.17 (t, J = 7.2 Hz, 1 H), 5.12 (s, 1 H), 2.71 (quint, J = 7.9 Hz, 1 H), 2.15 (septet, J = 5.6 Hz, 1 H), 1.58–1.45 (m, 2 H), 1.39–1.29 (m, 2 H), 0.89 (t, J = 7.3 Hz, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 176.6, 159.7 (d, 1 J C-F = 247.0 Hz), 153.1, 152.6, 144.7, 144.3, 141.6, 128.7, 127.4, 126.1, 124.9 (d, 3 J C-F = 7.6 Hz), 123.3, 122.1, 121.8 (d, 4 J C-F = 4.6 Hz), 120.3 (d, 3 J C-F = 8.1 Hz), 118.8, 110.8 (d, 2 J C-F = 23.7 Hz), 44.9, 30.8, 26.4, 22.5, 13.8.

19F NMR (470 MHz, CDCl3): δ = –114.7.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C22H18ClFNaO2: 391.0872; found: 391.0868.


#

3-(2-Aryl-3-bromo-1H-inden-1-yl)-4H-chromen-4-ones 6ca–6cr; General Procedure

Compounds 6ca6cr were prepared by following a similar procedure as described for compounds 6aa6ah, using BBr3 (2.5 equiv) instead of BF3·OEt2 and 0.172 mmol each of 3 and 4. In the case of 6cr, 3.5 equivalents of BBr3 were used.


#

3-(3-Bromo-2-phenyl-1H-inden-1-yl)-4H-chromen-4-one (6ca)

Yield: 60.7 mg (85%, reaction time = 5.5 h); white solid; mp 150–153 °C.

IR (CHCl3): 2915, 2857, 1631, 1613, 1465, 1395, 1351, 909, 816, 592, 534 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.29 (dd, J = 8.5, 1.9 Hz, 1 H), 7.77–7.75 (m, 2 H), 7.61 (ddd, J = 7.0, 5.1, 1.8 Hz, 1 H), 7.54 (d, J = 7.6 Hz, 1 H), 7.47 (d, J = 7.5 Hz, 1 H), 7.42–7.36 (m, 4 H), 7.33 (s, 1 H), 7.31–7.28 (m, 2 H), 7.23 (dt, J = 7.4, 1.1 Hz, 1 H), 5.76 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.3, 156.2, 153.2, 145.2, 143.7, 142.7, 133.6, 133.5, 128.7, 128.5, 128.1, 127.6, 127.0, 125.9, 125.2, 123.8, 123.4, 122.4, 120.9, 118.8, 118.1, 46.6.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C24H15BrNaO2: 437.0148; found: 437.0152.


#

3-(3-Bromo-2-phenyl-1H-inden-1-yl)-6-methyl-4H-chromen-4-one (6cb)

Yield: 59 mg (80%, reaction time = 5 h); white solid; mp 172–175 °C.

IR (CHCl3): 3057, 2926, 1641, 1622, 1574, 1483, 1243, 1046, 807, 696, 604 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.08 (s, 1 H), 7.76 (d, J = 7.4 Hz, 2 H), 7.53 (d, J = 7.6 Hz, 1 H), 7.46 (d, J = 7.5 Hz, 1 H), 7.42–7.35 (m, 4 H), 7.30–7.27 (m, 2 H), 7.24–7.18 (m, 2 H), 5.77 (s, 1 H), 2.45 (s, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.4, 154.5, 153.1, 145.2, 143.7, 142.6, 135.2, 134.9, 133.5, 128.7, 128.5, 128.1, 127.6, 127.0, 125.2, 123.44, 123.4, 122.2, 120.9, 118.7, 117.8, 46.6, 20.9.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C25H17BrNaO2: 451.0304; found: 451.0304.


#

6-Bromo-3-(3-bromo-2-phenyl-1H-inden-1-yl)-4H-chromen-4-one (6cc)

Yield: 72.2 mg (85%, reaction time = 5.5 h); white solid; mp 110–112 °C.

IR (CHCl3): 3064, 2925, 1641, 1620, 1483, 1320, 1160, 935, 746, 696, 604 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.41 (d, J = 2.3 Hz, 1 H), 7.75 (s, 1 H), 7.73 (s, 1 H), 7.69 (dd, J = 8.9, 2.4 Hz, 1 H), 7.53 (d, J = 7.6 Hz, 1 H), 7.44–7.42 (m, 1 H), 7.40–7.36 (m, 3 H), 7.33–7.29 (m, 2 H), 7.23–7.19 (m, 2 H), 5.72 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 176.0, 154.9, 153.3, 144.8, 143.4, 142.6, 136.6, 133.3, 128.7, 128.5, 128.2, 127.7, 127.0, 125.0, 123.3, 122.7, 120.9, 120.0, 119.0, 118.6, 46.5.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C24H14Br2NaO2: 514.9253; found: 514.9248.


#

3-(3-Bromo-2-phenyl-1H-inden-1-yl)-6-fluoro-4H-chromen-4-one (6cd)

Yield: 61.1 mg (82%, reaction time = 3.5 h); white solid; mp 190–193 °C.

IR (CHCl3): 3064, 2923, 2850, 1637, 1580, 1478, 1458, 1264, 1129, 939, 828, 731, 693, 594 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.92 (dd, J = 7.9, 2.5 Hz, 1 H), 7.75 (d, J = 7.6 Hz, 2 H), 7.53 (d, J = 7.6 Hz, 1 H), 7.46–7.42 (m, 1 H), 7.40–7.36 (m, 3 H), 7.34–7.29 (m, 4 H), 7.26–7.22 (m, 1 H), 5.73 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 176.6, 159.5 (d, 1 J C-F = 247.3 Hz), 153.4, 152.4, 144.9, 143.5, 142.7, 133.4, 128.6 (d, 2 J C-F = 15.4 Hz), 128.2, 127.7, 127.1, 124.9 (d, 3 J C-F = 7.1 Hz), 123.4, 122.1, 121.9, 121.85, 121.0, 120.3 (d, 3 J C-F = 8.0 Hz), 119.0, 110.7 (d, 2 J C-F = 23.8 Hz), 46.5.

19F NMR (470 MHz, CDCl3): δ = –114.8.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C24H15BrFO2: 435.0216; found: 435.0218.


#

3-(3-Bromo-2-phenyl-1H-inden-1-yl)-6-nitro-4H-chromen-4-one (6ce)

Yield: 64.1 mg (81%, reaction time = 3.5 h); white solid; mp 180–184 °C.

IR (CHCl3): 3080, 2924, 2857, 1649, 1628, 1529, 1465, 1345, 1321, 1262, 746, 696, 592 cm–1.

1H NMR (400 MHz, CDCl3): δ = 9.16 (d, J = 2.6 Hz, 1 H), 8.44 (dd, J = 9.2, 2.7 Hz, 1 H), 7.74 (d, J = 7.5 Hz, 2 H), 7.54 (d, J = 7.5 Hz, 1 H), 7.48–7.44 (m, 2 H), 7.42–7.37 (m, 4 H), 7.32–7.27 (d, J = 7.4 Hz, 1 H), 7.25–7.23 (m, 1 H), 5.71 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 176.0, 158.9, 153.5, 144.8, 144.4, 143.0, 142.7, 133.2, 128.7, 128.6, 128.3, 128.0, 127.9, 127.2, 123.74, 123.7, 123.3, 122.8, 121.2, 119.9, 119.4, 46.4.

HRMS (ESI-TOF): m/z [M + K]+ calcd for C24H14BrKNO4: 497.9738; found: 497.9740.


#

3-(3-Bromo-2-phenyl-1H-inden-1-yl)-4H-benzo[h]chromen-4-one (6cf)

Yield: 65.6 mg (82%, reaction time = 8 h); white solid; mp 68–70 °C.

IR (CHCl3): 3065, 2979, 2928, 1642, 1462, 1442, 1379, 1254, 1046, 914, 698, 570 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.23 (t, J = 8.8 Hz, 2 H), 7.87 (d, J = 8.2 Hz, 1 H), 7.81 (d, J = 7.7 Hz, 2 H), 7.75 (d, J = 8.8 Hz, 1 H), 7.64 (t, J = 7.8 Hz, 1 H), 7.57–7.52 (m, 4 H), 7.42–7.36 (m, 3 H), 7.29–7.27 (m, 1 H), 7.23–7.22 (m, 1 H), 5.84 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.1, 153.7, 152.3, 145.1, 143.6, 142.7, 135.7, 133.5, 129.3, 128.7, 128.6, 128.2, 128.0, 127.7, 127.1, 127.0, 125.4, 124.0, 123.8, 123.5, 122.1, 121.0, 120.8, 120.1, 118.9, 46.7.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C28H17BrNaO2: 489.0287; found: 489.0286.


#

3-(3-Bromo-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-4H-benzo[h]-chromen-4-one (6cg)

Yield: 71.3 mg (84%, reaction time = 6.5 h); white solid; mp 172–174 °C.

IR (CHCl3): 2985, 2938, 1642, 1447, 1374, 1243, 1048, 914, 738, 609 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.24 (dd, J = 8.1, 2.3 Hz, 2 H), 7.87 (d, J = 8.1 Hz, 1 H), 7.76 (d, J = 8.8 Hz, 1 H), 7.69 (d, J = 8.3 Hz, 2 H), 7.64 (dt, J = 7.3, 1.3 Hz, 1 H), 7.56 (dt, J = 7.6, 1.1 Hz, 1 H), 7.51 (s, 1 H), 7.40 (d, J = 7.7 Hz, 1 H), 7.32 (s, 1 H), 7.20–7.16 (m, 3 H), 5.79 (s, 1 H), 2.35 (s, 3 H), 2.29 (s, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.3, 153.8, 152.4, 145.3, 142.4, 140.2, 138.0, 137.0, 135.7, 130.7, 129.3, 129.27, 128.6, 128.3, 128.0, 127.1, 125.4, 124.3, 124.2, 123.9, 122.1, 120.9, 120.5, 120.1, 118.1, 46.3, 21.4, 21.2.

HRMS (ESI-TOF): m/z [M + K]+ calcd for C30H21BrKO2: 531.0357; found: 531.0353.


#

2-(3-Bromo-2-phenyl-1H-inden-1-yl)-1H-benzo[f]chromen-1-one (6ch)

Yield: 70.4 mg (88%, reaction time = 2.5 h); white solid; mp 88–90 °C.

IR (CHCl3): 3064, 2981, 2925, 1642, 1461, 1442, 1400, 1244, 1046, 792, 698, 575 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.21 (dd, J = 8.1, 2.5 Hz, 2 H), 7.85–7.81 (m, 3 H), 7.72 (d, J = 8.8 Hz, 1 H), 7.61 (dt, J = 7.5, 1.0 Hz, 1 H), 7.56–7.50 (m, 4 H), 7.42–7.37 (m, 3 H), 7.28–7.27 (m, 1 H), 7.23 (dt, J = 7.5, 0.8 Hz, 1 H), 5.84 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.1, 153.7, 152.3, 145.1, 143.6, 142.6, 135.6, 133.5, 129.3, 128.7, 128.5, 128.1, 127.9, 127.6, 127.1, 127.0, 125.4, 123.9, 123.8, 123.4, 122.0, 120.9, 120.7, 120.0, 118.9, 46.6.

HRMS (ESI-TOF): m/z [M + K]+ calcd for C28H17BrKO2: 503.0043; found: 503.0038.


#

3-(3-Bromo-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-4H-chromen-4-one (6ci)

Yield: 61 mg (80%, reaction time = 5.5 h); white solid; mp 184–186 °C.

IR (CHCl3): 3054, 2918, 2854, 1631, 1465, 1393, 1351, 907, 816, 710, 590 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.31 (d, J = 7.0 Hz, 1 H), 7.65–7.62 (m, 3 H), 7.43–7.38 (m, 2 H), 7.32–7.27 (m, 3 H), 7.19–7.16 (m, 3 H), 5.70 (s, 1 H), 2.34 (s, 3 H), 2.31 (s, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 177.5, 156.2, 153.3, 145.3, 142.5, 140.2, 137.9, 137.0, 133.6, 130.7, 129.2, 128.6, 128.3, 126.0, 125.2, 124.1, 123.9, 122.8, 120.5, 118.12, 118.1, 46.3, 21.5, 21.3.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C26H19BrNaO2: 467.0443; found: 467.0444.


#

3-(3-Bromo-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-6-methyl-4H-chromen-4-one (6cj)

Yield: 65.3 mg (83%, reaction time = 6 h); white solid; mp 228–230 °C.

IR (CHCl3): 3027, 2921, 2854, 1641, 1621, 1484, 1320, 1166, 909, 816, 787, 594 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.10 (s, 1 H), 7.64 (d, J = 8.2 Hz, 2 H), 7.43–7.37 (m, 2 H), 7.29–7.27 (m, 2 H), 7.21–7.15 (m, 4 H), 5.71 (s, 1 H), 2.46 (s, 3 H), 2.34 (s, 3 H), 2.31 (s, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.5, 154.5, 153.2, 145.4, 142.5, 140.2, 137.9, 136.9, 135.1, 134.8, 130.7, 129.2, 128.5, 128.2, 125.2, 124.1, 123.5, 122.5, 120.4, 118.0, 117.9, 46.3, 21.4, 21.2, 20.9.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C27H22BrO2: 457.0798; found: 457.0799.


#

3-(3-Bromo-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-6-fluoro-4H-chromen-4-one (6ck)

Yield: 68.2 mg (86%, reaction time = 4 h); white solid; mp 250–252 °C.

IR (CHCl3): 3061, 2921, 2854, 1635, 1613, 1476, 1454, 1390, 1265, 1129, 817, 593 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.95 (t, J = 7.5 Hz, 1 H), 7.64 (t, J = 7.7 Hz, 2 H), 7.42–7.33 (m, 4 H), 7.27–7.26 (m, 1 H), 7.22–7.16 (m, 3 H), 5.68 (s, 1 H), 2.36–2.31 (m, 6 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 176.8, 159.6 (d, 1 J C-F = 248.6 Hz), 153.5, 152.5, 145.1, 142.3, 140.2, 138.0, 137.0, 130.6, 129.3, 128.5, 128.4, 124.9 (d, 3 J C-F = 7.3 Hz), 124.1, 122.3, 121.9 (d, 3 J C-F = 10.2 Hz), 120.6, 120.3 (d, 3 J C-F = 8.1 Hz), 118.2, 110.7 (d, 2 J C-F = 23.7 Hz), 46.2, 21.5, 21.3.

19F NMR (470 MHz, CDCl3): δ = –114.9.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C26H19BrFO2: 461.0547; found: 461.0552.


#

6-Bromo-3-(3-bromo-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-4H-chromen-4-one (6cl)

Yield: 64.7 mg (72%, reaction time = 6 h); white solid; mp 184–186 °C.

IR (CHCl3): 2921, 2854, 1641, 1621, 1483, 1432, 1320, 1166, 909, 817, 787, 594 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.43 (d, J = 2.2 Hz, 1 H), 7.68 (dd, J = 8.9, 2.4 Hz, 1 H), 7.62 (d, J = 8.2 Hz, 2 H), 7.38 (d, J = 7.9 Hz, 1 H), 7.31 (s, 1 H), 7.24 (s, 1 H), 7.21–7.16 (m, 4 H), 5.66 (s, 1 H), 2.35 (s, 3 H), 2.32 (s, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 176.2, 155.0, 153.4, 145.0, 142.2, 140.2, 138.0, 137.1, 136.6, 130.6, 129.3, 128.6, 128.5, 128.4, 125.1, 124.1, 123.1, 120.6, 120.1, 118.6, 118.3, 46.2, 21.5, 21.3.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C26H19Br2O2: 520.9746; found: 520.9739.


#

3-(3-Bromo-2-(4-bromophenyl)-1H-inden-1-yl)-6-methyl-4H-chromen-4-one (6cm)

Yield: 63.8 mg (73%, reaction time = 2.5 h); white solid; mp 160–164 °C.

IR (CHCl3): 1640, 1622, 1483, 1458, 1319, 1158, 910, 819, 732, 606 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.07 (s, 1 H), 7.73 (d, J = 7.7 Hz, 1 H), 7.64–7.61 (m, 1 H), 7.53–7.50 (m, 2 H), 7.48 (d, J = 8.5 Hz, 1 H), 7.44–7.41 (m, 2 H), 7.39–7.35 (m, 2 H), 7.31–7.28 (m, 1 H), 7.25–7.19 (m, 1 H), 5.72 (s, 1 H), 2.46 (s, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 177.2, 154.5, 153.2, 142.8, 142.6, 135.4, 135.0, 132.4, 131.7, 130.7, 130.2, 128.7, 127.7, 127.2, 125.2, 123.4, 122.3, 121.9, 121.0, 119.3, 117.9, 46.6, 20.9.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C25H16Br2NaO2: 528.9409; found: 528.9401.


#

3-(3-Bromo-2-ethyl-1H-inden-1-yl)-4H-chromen-4-one (6cn)

Yield: 53.7 mg (85%, reaction time = 5 h); pale yellow oil.

IR (CHCl3): 2966, 2923, 1644, 1621, 1483, 1459, 1339, 1318, 1160, 1139, 935, 817, 727, 597 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.32 (d, J = 7.1 Hz, 1 H), 7.68 (t, J = 7.6 Hz, 1 H), 7.47–7.41 (m, 2 H), 7.39–7.31 (m, 4 H), 7.17 (t, J = 7.1 Hz, 1 H), 5.18 (s, 1 H), 2.72 (sextet, J = 7.4 Hz, 1 H), 2.21 (sextet, J = 6.9 Hz, 1 H), 1.14 (t, J = 7.5 Hz, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 177.3, 156.3, 153.0, 149.3, 145.0, 142.8, 133.7, 128.0, 127.4, 126.0, 125.3, 123.8, 123.2, 122.2, 119.9, 118.2, 118.0, 45.5, 21.7, 13.3.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C20H15BrNaO2: 389.0147; found: 389.0143.


#

3-(3-Bromo-2-ethyl-1H-inden-1-yl)-6-methyl-4H-chromen-4-one (6co)

Yield: 54.4 mg (83%, reaction time = 6 h); pale yellow oil.

IR (CHCl3): 2965, 2927, 2871, 1644, 1621, 1483, 1459, 1318, 1160, 1045, 816, 727, 542 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.09 (s, 1 H), 7.48 (d, J = 7.7 Hz, 1 H), 7.38–7.30 (m, 5 H), 7.16 (t, J = 7.2 Hz, 1 H), 5.18 (s, 1 H), 2.71 (sextet, J = 7.3 Hz, 1 H), 2.48 (s, 3 H), 2.21 (sextet, J = 6.8 Hz, 1 H), 1.13 (t, J = 7.5 Hz, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 177.4, 154.7, 152.9, 149.5, 145.1, 142.8, 135.3, 135.0, 127.4, 126.0, 125.3, 123.5, 123.2, 121.9, 119.9, 117.9, 117.87, 45.5, 21.7, 21.0, 13.2.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C21H17BrNaO2: 403.0304; found: 403.0305.


#

6-Bromo-3-(3-bromo-2-pentyl-1H-inden-1-yl)-4H-chromen-4-one (6cp)

Yield: 67.2 mg (80%, reaction time = 5.5 h); pale yellow oil.

IR (CHCl3): 2959, 2928, 2856, 1647, 1622, 1605, 1461, 1435, 1335, 1149, 933, 818, 725, 600 cm–1.

1H NMR (500 MHz, CDCl3): δ = 8.44 (s, 1 H), 7.75 (dd, J = 8.9, 2.5 Hz, 1 H), 7.39–7.29 (m, 5 H), 7.17 (dt, J = 7.2, 1.2 Hz, 1 H), 5.12 (s, 1 H), 2.70–2.64 (m, 1 H), 2.16 (septet, J = 5.2 Hz, 1 H), 1.58–1.48 (m, 2 H), 1.34–1.27 (m, 4 H), 0.85 (t, J = 6.7 Hz, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 176.0, 155.1, 153.1, 147.8, 144.8, 142.7, 136.7, 128.7, 127.5, 126.1, 125.1, 123.2, 122.6, 120.13, 120.0, 119.0, 118.8, 45.7, 31.5, 28.4, 28.2, 22.4, 13.9.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C23H21Br2O2: 488.9883; found: 488.9883.


#

3-(3-Bromo-2-butyl-1H-inden-1-yl)-6-fluoro-4H-chromen-4-one (6cq)

Yield: 59.7 mg (84%, reaction time = 6 h); pale yellow oil.

IR (CHCl3): 2959, 2928, 2856, 1647, 1622, 1606, 1461, 1435, 1335, 1149, 933, 725, 600 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.94 (d, J = 6.7 Hz, 1 H), 7.44–7.42 (m, 1 H), 7.41–7.39 (m, 1 H), 7.37–7.29 (m, 4 H), 7.17 (dt, J = 7.3, 1.4 Hz, 1 H), 5.12 (s, 1 H), 2.73–2.65 (m, 1 H), 2.16 (septet, J = 5.2 Hz, 1 H), 1.54–1.45 (m, 2 H), 1.39–1.30 (m, 2 H), 0.89 (t, J = 7.3 Hz, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 176.6, 159.7 (d, 1 J C-F = 248.1 Hz), 153.1, 152.6, 147.8, 145.0, 142.7, 127.5, 126.1, 124.9 (d, 3 J C-F = 7.4 Hz), 123.2, 122.0 (d, 2 J C-F = 25.8 Hz), 121.7, 120.3 (d, 3 J C-F = 8.0 Hz), 120.0, 118.9, 110.8 (d, 2 J C-F = 23.7 Hz), 45.7, 30.9, 27.9, 22.5, 13.8.

19F NMR (470 MHz, CDCl3): δ = –114.7.

HRMS (ESI-TOF): m/z [M + K]+ calcd for C22H18BrFKO2: 451.0106; found: 451.0106.


#

3-(3-Bromo-2-(2-bromoethyl)-1H-inden-1-yl)-4H-chromen-4-one (6cr)

Yield: 61.3 mg (80%, reaction time = 5.5 h); white semisolid.

IR (CHCl3): 3077, 2925, 2857, 1639, 1610, 1479, 1463, 1317, 909, 824, 668 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.30 (d, J = 7.9 Hz, 1 H), 7.72–7.67 (m, 1 H), 7.48–7.43 (m, 3 H), 7.40–7.36 (m, 2 H), 7.31 (d, J = 7.2 Hz, 1 H), 7.23 (dt, J = 7.4, 0.9 Hz, 1 H), 5.17 (s, 1 H), 3.65–3.55 (m, 2 H), 3.25 (quint, J = 6.7 Hz, 1 H), 2.76 (septet, J = 7.3 Hz, 1 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 177.1, 156.3, 153.4, 144.6, 144.3, 142.5, 133.9, 127.7, 126.7, 126.1, 125.5, 123.7, 123.3, 121.7, 121.3, 120.5, 118.2, 46.1, 31.7, 30.1.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C20H14Br2NaO2: 468.9233; found: 468.9238.


#

8-(2-Aryl-3-halo-1H-inden-1-yl)-2H-chromen-2-ones 8a–8f; General Procedure

Compounds 8a8f were prepared by following a similar procedure as described for compounds 6aa6ah, using BBr3 or BCl3 (2.5 equiv) instead of BF3·OEt2 and 0.172 mmol each of 7 and 4.


#

8-(3-Chloro-2-phenyl-1H-inden-1-yl)-2H-chromen-2-one (8a)

Yield: 60.5 mg (95%, reaction time = 4 h); white solid; mp 126–130 °C.

IR (CHCl3): 2923, 2850, 1735, 1602, 1490, 1400, 1267, 1076, 918, 868, 665, 534 cm–1.

1H NMR (500 MHz, CDCl3): δ = 7.72–7.70 (m, 3 H), 7.56 (d, J = 7.5 Hz, 1 H), 7.39 (t, J = 7.5 Hz, 1 H), 7.32–7.29 (m, 2 H), 7.27–7.25 (m, 2 H), 7.22–7.19 (m, 2 H), 6.96 (t, J = 7.0 Hz, 1 H), 6.84 (s, 1 H), 6.50 (d, J = 8.9 Hz, 1 H), 6.04 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 160.5, 152.1, 144.0, 141.9, 141.5, 133.0, 130.4, 129.1, 128.5, 128.4, 127.8, 127.6, 127.3, 127.0, 126.8, 124.6, 123.6, 119.7, 119.1, 116.5, 47.8.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C24H15ClNaO2: 393.0653; found: 393.0647.


#

8-(3-Chloro-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-2H-chromen-2-one (8b)

Yield: 63.8 mg (93%, reaction time = 4.5 h); white solid; mp 139–142 °C.

IR (CHCl3): 2854, 1734, 1602, 1490, 1400, 1266, 1076, 914, 699, 578, 538 cm–1.

1H NMR (500 MHz, CDCl3): δ = 7.69 (d, J = 8.8 Hz, 1 H), 7.62 (d, J = 7.8 Hz, 2 H), 7.43 (d, J = 7.7 Hz, 1 H), 7.24 (d, J = 7.5 Hz, 1 H), 7.18 (d, J = 7.7 Hz, 1 H), 7.11 (d, J = 8 Hz, 2 H), 7.06 (s, 1 H), 6.95 (t, J = 6.8 Hz, 1 H), 6.86 (s, 1 H), 6.50 (d, J = 8.7 Hz, 1 H), 5.99 (s, 1 H), 2.32 (s, 3 H), 2.27 (s, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 160.5, 152.0, 145.2, 143.9, 140.4, 139.4, 137.5, 136.8, 130.4, 130.2, 129.0, 128.3, 128.27, 128.25, 127.7, 126.7, 124.6, 124.3, 119.2, 119.1, 116.3, 47.3, 21.4, 21.1.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C26H20ClO2: 399.1146; found: 399.1138.


#

8-(3-Bromo-2-phenyl-1H-inden-1-yl)-2H-chromen-2-one (8c)

Yield: 64.3 mg (90%, reaction time = 10 h); white solid; mp 110–112 °C.

IR (CHCl3): 3067, 1734, 1602, 1574, 1488, 1402, 1175, 918, 621, 578 cm–1.

1H NMR (500 MHz, CDCl3): δ = 7.70–7.69 (m, 3 H), 7.55 (d, J = 7.6 Hz, 1 H), 7.40 (t, J = 7.0 Hz, 1 H), 7.32–7.29 (m, 2 H), 7.25–7.19 (m, 4 H), 6.95 (t, J = 6.8 Hz, 1 H), 6.82 (s, 1 H), 6.47 (d, J = 10.4 Hz, 1 H), 6.01 (s, 1 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 160.4, 152.1, 145.3, 143.9, 143.1, 133.7, 129.3, 128.7, 128.2, 127.9, 127.7, 127.0, 126.9, 126.8, 124.6, 123.5, 120.9, 119.1, 118.9, 117.0, 116.4, 49.0.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C24H15BrNaO2: 437.0148; found: 437.0140.


#

8-(3-Bromo-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-2H-chromen-2-one (8d)

Yield: 67.1 mg (88%, reaction time = 11 h); white solid; mp 145–148 °C.

IR (CHCl3): 2922, 1735, 1602, 1491, 1258, 1075, 733, 618 cm–1.

1H NMR (500 MHz, CDCl3): δ = 7.68 (d, J = 6.7 Hz, 1 H), 7.60 (d, J = 8 Hz, 2 H), 7.41 (d, J = 7.7 Hz, 1 H), 7.24 (d, J = 7.5 Hz, 1 H), 7.19 (d, J = 7.7 Hz, 1 H), 7.10 (d, J = 7.9 Hz, 2 H), 7.03 (s, 1 H), 6.96 (t, J = 7.0 Hz, 1 H), 6.84 (s, 1 H), 6.49 (d, J = 8.8 Hz, 1 H), 5.96 (s, 1 H), 2.32 (s, 3 H), 2.27 (s, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 160.5, 152.0, 144.2, 143.9, 143.2, 140.6, 137.6, 136.8, 130.9, 130.5, 129.0, 128.4, 128.3, 127.5, 126.7, 124.6, 124.2, 120.5, 119.0, 118.2, 116.3, 48.7, 21.4, 21.2.

HRMS (ESI-TOF): m/z [M + H]+ calcd for C26H20BrO2: 443.0641; found: 443.0634.


#

8-(3-Chloro-2-phenyl-1H-inden-1-yl)-6-methyl-2H-chromen-2-one (8e)

Yield: 53.1 mg (79%, reaction time = 5 h); yellow solid; mp 105–108 °C.

IR (CHCl3): 2924, 1732, 1625, 1606, 1583, 1429, 1295, 1110, 878, 655, 593 cm–1.

1H NMR (500 MHz, CDCl3): δ = 7.96 (d, J = 7.6 Hz, 2 H), 7.87 (d, J = 8.8 Hz, 1 H), 7.81 (d, J = 7.6 Hz, 1 H), 7.63 (t, J = 7.3 Hz, 1 H), 7.57–7.54 (m, 2 H), 7.50–7.44 (m, 4 H), 6.86 (s, 1 H), 6.70 (d, J = 8.1 Hz, 1 H), 6.26 (s, 1 H), 2.34 (s, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 160.7, 150.2, 145.2, 143.9, 141.8, 141.6, 134.3, 133.1, 131.0, 128.9, 128.5, 128.3, 127.7, 127.5, 126.9, 126.8, 123.6, 119.6, 118.9, 116.3, 47.7, 20.5.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C25H17ClNaO2: 407.0809; found: 407.0802.


#

8-(3-Bromo-6-methyl-2-(p-tolyl)-1H-inden-1-yl)-6-methyl-2H-chromen-2-one (8f)

Yield: 69.1 mg (88%, reaction time = 6 h); yellow solid; mp 78–80 °C.

IR (CHCl3): 2922, 1732, 1623, 1606, 1459, 1395, 1286, 1156, 1106, 914, 790, 666, 614 cm–1.

1H NMR (400 MHz, CDCl3): δ = 7.59 (d, J = 8.1 Hz, 2 H), 7.40 (d, J = 7.7 Hz, 1 H), 7.30–7.25 (m, 1 H), 7.18 (d, J = 7.7 Hz, 1 H), 7.09 (d, J = 7.9 Hz, 2 H), 7.01 (d, J = 5.5 Hz, 2 H), 6.60 (s, 1 H), 6.48–6.42 (m, 1 H), 5.91 (s, 1 H), 2.32 (s, 3 H), 2.27 (s, 3 H), 2.11 (s, 3 H).

13C{1H} NMR (125 MHz, CDCl3): δ = 160.9, 150.3, 144.4, 143.9, 140.7, 137.6, 136.8, 134.3, 131.2, 131.1, 129.0, 128.5, 128.3, 127.1, 126.9, 124.3, 120.5, 118.9, 118.2, 116.4, 48.7, 21.5, 21.2, 20.6.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C27H21BrNaO2: 479.0617; found: 479.0609.


#

2-(Hydroxymethyl)cyclohex-2-en-1-one (15)[16]

To a stirred mixture of 36% aq HCHO (0.45 mL, 5.20 mmol, 5.0 equiv) and cyclohex-2-enone (100 mg, 1.040 mmol, 1.0 equiv) was added DMAP (38 mg, 0.312 mmol, 0.3 equiv). The resulting mixture was stirred at room temperature. After consumption of the starting material (2 d), the reaction was quenched with 1.5 N HCl until pH 4. The mixture was extracted with CH2Cl2 (3 × 3 mL) and the combined organic layers were washed successively with sat. aq NaHCO3 solution and brine. Solvents were removed through vacuum and the residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 3:2) to afford 15 (92 mg, 70%) as a pale yellow oil.

IR (CHCl3): 2929, 2869, 1670, 1391, 1173, 1068, 910, 543 cm–1.

1H NMR (400 MHz, CDCl3): δ = 6.92 (t, J = 3.8 Hz, 1 H), 4.21 (s, 2 H), 2.59 (s, 1 H), 2.44–2.36 (m, 4 H), 1.99 (quint, J = 6.6 Hz, 2 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 200.6, 146.9, 138.2, 61.8, 38.1, 25.6, 22.6.


#

6-Oxocyclohex-1-ene-1-carbaldehyde (10e)[17]

To a stirred solution of 2-(hydroxymethyl)cyclohex-2-en-1-one (15; 50 mg, 0.396 mmol, 1.0 equiv) in EtOAc (3 mL) was added IBX (166 mg, 0.594 mmol, 1.5 equiv) under N2 atmosphere. The resulting suspension was refluxed for 5 h (TLC monitoring). The reaction mixture was cooled to room temperature and filtered through a sintered glass funnel. The filter cake was washed with EtOAc (3 × 2 mL). The combined filtrate was concentrated and the residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 7:3) to afford 10e (39.3 mg, 80%) as a green oil.

IR (CHCl3): 2924, 2854, 1714, 1460, 1267, 1068, 822, 669 cm–1.

1H NMR (400 MHz, CDCl3): δ = 10.07 (s, 1 H), 7.81 (t, J = 4.1 Hz, 1 H), 2.63–2.58 (m, 2 H), 2.55–2.51 (m, 2 H), 2.07 (quint, J = 7.1 Hz, 2 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 197.9, 189.2, 157.8, 135.0, 38.0, 26.4, 21.8.

LRMS (ESI-TOF): m/z [M + K]+ calcd for C7H8KO2: 163.0155; found: 163.0735.


#

2,2-Difluoro-6-methyl-4-phenyl-2H-1,3,2-dioxaborinin-1-ium-2-uide (12)

To a mixture of benzoylacetone (11; 50 mg, 0.308 mmol, 1.0 equiv) and alkyne 4a (55 mg, 0.308 mmol, 1.0 equiv) in CH2Cl2 (2 mL) was added BF3·OEt2 (0.215 mL, 0.77 mmol, 2.5 equiv) at room temperature. The mixture was stirred for 7 h at which time TLC indicated consumption of 11. The reaction was then quenched with a few drops of sat. aq Na2S2O3 solution. The solvent was removed through vacuum and the residue was purified by silica gel column chromatography (petroleum ether/EtOAc, 4:1) to afford 12 (38.4 mg, 60%) as a cream-coloured solid; mp 120–123 °C.[11]

IR (CHCl3): 1542, 1440, 1357, 1116, 1069, 707, 680, 575 cm–1.

1H NMR (400 MHz, CDCl3): δ = 8.05 (d, J = 7.6 Hz, 2 H), 7.68 (t, J = 7.4 Hz, 1 H), 7.52 (t, J = 7.7 Hz, 2 H), 6.60 (s, 1 H), 2.41 (s, 3 H).

13C{1H} NMR (100 MHz, CDCl3): δ = 192.6, 182.8, 135.4, 131.1, 129.1, 129.0, 97.5, 24.7.

19F NMR (470 MHz, CDCl3): δ = –138.6.

HRMS (ESI-TOF): m/z [M + Na]+ calcd for C10H9BF2NaO2: 233.0558; found: 233.0554.


#
#

Acknowledgment

A.K. thanks the Indian Institute of Technology Bombay for a research fellowship.

Supporting Information

  • References


    • For examples, see:
    • 1a Adesanya SA, Nia R, Martin M.-T, Boukamcha N, Montagnac A, Païs M. J. Nat. Prod. 1999; 62: 1694
    • 1b Huang K.-S, Wang Y.-H, Li R.-L, Lin M. Phytochemistry 2000; 54: 875
    • 1c Yu H, Kim IJ, Folk JE, Tian X, Rothman RB, Baumann MH, Dersch CM, Flippen-Anderson JL, Parrish D, Jacobson AE, Rice KC. J. Med. Chem. 2004; 47: 2624
    • 1d Clegg NJ, Paruthiyil S, Leitman DC, Scanlan TS. J. Med. Chem. 2005; 48: 5989
    • 1e Majetich G, Shimkus JM. J. Nat. Prod. 2010; 73: 284
    • 1f Liedtke AJ, Crews BC, Daniel CM, Blobaum AL, Kingsley PJ, Ghebreselasie K, Marnett LJ. J. Med. Chem. 2012; 55: 2287
    • 1g Vilums M, Heuberger J, Heitman LH, Ijzerman AP. Med. Res. Rev. 2015; 35: 1097

      For examples, see:
    • 2a Dyrager C, Möllers LN, Kjäll LK, Alao JP, Diner P, Wallner FK, Sunnerhagen P, Grøtli M. J. Med. Chem. 2011; 54: 7427
    • 2b Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F. Chem. Rev. 2014; 114: 4960
    • 2c Keri RS, Budagumpi S, Pai RK, Balakrishna RG. Eur. J. Med. Chem. 2014; 78: 340
    • 2d Silva CF. M, Pinto DC. G. A, Silva AM. S. ChemMedChem. 2016; 11: 2252
    • 2e Reis J, Gaspar A, Milhazes N, Borges F. J. Med. Chem. 2017; 60: 7941
    • 2f Li F, Wu J.-J, Wang J, Yang X.-L, Cai P, Liu Q.-H, Kong L.-Y, Wang X.-B. Bioorg. Med. Chem. 2017; 25: 3815

      For examples, see:
    • 3a Meunier B. Acc. Chem. Res. 2008; 41: 69
    • 3b Decker M. Curr. Med. Chem. 2011; 18: 1464
    • 3c Lödige M, Hiersch L. Int. J. Med. Chem. 2015; DOI: doi: 10.1155/2015/458319.
    • 3d Bérubé G. Expert Opin. Drug Discovery 2016; 11: 281
    • 3e Agarwal D, Gupta RD, Awasthi SK. Antimicrob. Agents Chemother. 2017; 61: 1

      For some informative reviews, see:
    • 4a Denmark SE. Compr. Org. Synth. 1991; 5: 751
    • 4b Santelli-Rouvier C, Santelli M. Synthesis 1983; 429
    • 4c Tius MA. Eur. J. Org. Chem. 2005; 2193
    • 4d Nakanishi W, West FG. Curr. Opin. Drug Discovery Dev. 2009; 12: 732
    • 4e Shimada N, Stewart C, Tius MA. Tetrahedron 2011; 67: 5851
    • 4f Spencer WT. III, Vaidya T, Frontier AJ. Eur. J. Org. Chem. 2013; 3621
    • 4g Di Grandi MJ. Org. Biomol. Chem. 2014; 12: 5331
    • 4h Wenz DR, Read de Alaniz J. Eur. J. Org. Chem. 2015; 23
    • 4i Vinogradov MG, Turova OV, Zlotin SG. Org. Biomol. Chem. 2017; 15: 8245

      For examples, see:
    • 5a Weinreb SM, Auerbach J. J. Am. Chem. Soc. 1975; 97: 2503
    • 5b Kim S.-H, Cha JK. Synthesis 2000; 2113
    • 5c Li W.-DZ, Wang Y.-Q. Org. Lett. 2003; 5: 2931
    • 5d He W, Huang J, Sun X, Frontier AJ. J. Am. Chem. Soc. 2007; 129: 498
    • 5e He W, Huang J, Sun X, Frontier AJ. J. Am. Chem. Soc. 2008; 130: 300
    • 5f Williams DR, Robinson LA, Nevill CR, Reddy JP. Angew. Chem. Int. Ed. 2007; 46: 915
    • 5g Bitar AY, Frontier AJ. Org. Lett. 2009; 11: 49
    • 5h Bhattacharya C, Bonfante P, Deagostino A, Kapulnik Y, Larini P, Occhiato EG, Prandi C, Venturello P. Org. Biomol. Chem. 2009; 7: 3413
    • 5i Carlsen PN, Mann TJ, Hoveyda AH, Frontier AJ. Angew. Chem. Int. Ed. 2014; 53: 9334
    • 5j Grant TN, Rieder CJ, West FG. Chem. Commun. 2009; 5676
    • 5k Malona JA, Cariou K, Frontier AJ. J. Am. Chem. Soc. 2009; 131: 7560
    • 5l Churruca F, Fousteris M, Ishikawa Y, von Wantoch Rekowski M, Hounsou C, Surrey T, Giannis A. Org. Lett. 2010; 12: 2096
    • 5m Vaidya T, Eisenberg R, Frontier AJ. ChemCatChem 2011; 3: 1531
    • 5n Magnus P, Freund WA, Moorhead EJ, Rainey T. J. Am. Chem. Soc. 2012; 134: 6140
    • 5o Zhou Z, Tius MA. Angew. Chem. Int. Ed. 2015; 54: 6037
    • 6a Alachouzos G, Frontier AJ. Angew. Chem. Int. Ed. 2017; 56: 15030
    • 6b Alachouzos G, Frontier AJ. J. Am. Chem. Soc. 2019; 141: 118
    • 6c Holt C, Alachouzos G, Frontier AJ. J. Am. Chem. Soc. 2019; 141: 5461
  • 7 Ghavtadze N, Fröhlich R, Bergander K, Würthwein E.-U. Synthesis 2008; 3397
    • 8a Viswanathan GS, Li C.-J. Tetrahedron Lett. 2002; 43: 1613
    • 8b Zhou X, Zhang H, Xie X, Li Y. J. Org. Chem. 2008; 73: 3958
    • 8c Yeh M.-CP, Lin M.-N, Hsu C.-H, Liang C.-J. J. Org. Chem. 2013; 78: 12381
    • 8d Strom KR, Impastato AC, Moy KJ, Landreth AJ, Snyder JK. Org. Lett. 2015; 17: 2126
    • 9a Ye S, Gao K, Zhou H, Yang X, Wu J. Chem. Commun. 2009; 5406
    • 9b Sanz R, Martínez A, García-García P, Fernández-Rodríguez MA, Rashid MA, Rodríguez F. Chem. Commun. 2010; 46: 7427
    • 9c Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 10 Sultana S, Maezono SM. B, Akhtar MS, Shim JJ, Wee YJ, Kim SH, Lee YR. Adv. Synth. Catal. 2018; 360: 751
  • 11 CCDC 1945920 (6ae), CCDC 1945839 (6bb), CCDC 1945927 (6bi), CCDC 1945916 (6bm), CCDC 1945936 (6cm), CCDC 1945919 (8e) and CCDC 1946265 (12) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. See the Supporting Information (SI) for structures.
    • 12a He W, Sun X, Frontier AJ. J. Am. Chem. Soc. 2003; 125: 14278
    • 12b Nie J, Zhu H.-W, Cui H.-F, Hua M.-Q, Ma J.-A. Org. Lett. 2007; 9: 3053
    • 12c Xi Z.-G, Zhu L, Luo S, Cheng J.-P. J. Org. Chem. 2013; 78: 606
    • 12d Zhu L, Xi Z.-G, Lv J, Luo S. Org. Lett. 2013; 15: 4496
    • 12e Zhu Y.-P, Cai Q, Jia F.-C, Liu M.-C, Gao Q.-H, Meng X.-G, Wu A.-X. Tetrahedron 2014; 70: 9536
    • 12f Carmichael RA, Sophanpanichkul P, Chalifoux WA. Org. Lett. 2017; 19: 2592
  • 13 During the completion and submission of our work a conceptionally similar paper appeared; see: Sultana S, Lee YR. Adv. Synth. Catal. 2020; 362: 927
  • 14 Dückert H, Khedkar V, Waldmann H, Kumar K. Chem. Eur. J. 2011; 17: 5130
  • 15 Levi ZU, Tilley TD. J. Am. Chem. Soc. 2009; 131: 2796
  • 16 Shairgojray BA, Dar AA, Bhat BA. Tetrahedron Lett. 2013; 54: 2391
  • 17 Adary EM, Chang C.-W, D’ Auria DT, Nguyen PM, Polewacz K, Reinicke JA, Seo H, Berger GO. Tetrahedron Lett. 2015; 56: 386

  • References


    • For examples, see:
    • 1a Adesanya SA, Nia R, Martin M.-T, Boukamcha N, Montagnac A, Païs M. J. Nat. Prod. 1999; 62: 1694
    • 1b Huang K.-S, Wang Y.-H, Li R.-L, Lin M. Phytochemistry 2000; 54: 875
    • 1c Yu H, Kim IJ, Folk JE, Tian X, Rothman RB, Baumann MH, Dersch CM, Flippen-Anderson JL, Parrish D, Jacobson AE, Rice KC. J. Med. Chem. 2004; 47: 2624
    • 1d Clegg NJ, Paruthiyil S, Leitman DC, Scanlan TS. J. Med. Chem. 2005; 48: 5989
    • 1e Majetich G, Shimkus JM. J. Nat. Prod. 2010; 73: 284
    • 1f Liedtke AJ, Crews BC, Daniel CM, Blobaum AL, Kingsley PJ, Ghebreselasie K, Marnett LJ. J. Med. Chem. 2012; 55: 2287
    • 1g Vilums M, Heuberger J, Heitman LH, Ijzerman AP. Med. Res. Rev. 2015; 35: 1097

      For examples, see:
    • 2a Dyrager C, Möllers LN, Kjäll LK, Alao JP, Diner P, Wallner FK, Sunnerhagen P, Grøtli M. J. Med. Chem. 2011; 54: 7427
    • 2b Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F. Chem. Rev. 2014; 114: 4960
    • 2c Keri RS, Budagumpi S, Pai RK, Balakrishna RG. Eur. J. Med. Chem. 2014; 78: 340
    • 2d Silva CF. M, Pinto DC. G. A, Silva AM. S. ChemMedChem. 2016; 11: 2252
    • 2e Reis J, Gaspar A, Milhazes N, Borges F. J. Med. Chem. 2017; 60: 7941
    • 2f Li F, Wu J.-J, Wang J, Yang X.-L, Cai P, Liu Q.-H, Kong L.-Y, Wang X.-B. Bioorg. Med. Chem. 2017; 25: 3815

      For examples, see:
    • 3a Meunier B. Acc. Chem. Res. 2008; 41: 69
    • 3b Decker M. Curr. Med. Chem. 2011; 18: 1464
    • 3c Lödige M, Hiersch L. Int. J. Med. Chem. 2015; DOI: doi: 10.1155/2015/458319.
    • 3d Bérubé G. Expert Opin. Drug Discovery 2016; 11: 281
    • 3e Agarwal D, Gupta RD, Awasthi SK. Antimicrob. Agents Chemother. 2017; 61: 1

      For some informative reviews, see:
    • 4a Denmark SE. Compr. Org. Synth. 1991; 5: 751
    • 4b Santelli-Rouvier C, Santelli M. Synthesis 1983; 429
    • 4c Tius MA. Eur. J. Org. Chem. 2005; 2193
    • 4d Nakanishi W, West FG. Curr. Opin. Drug Discovery Dev. 2009; 12: 732
    • 4e Shimada N, Stewart C, Tius MA. Tetrahedron 2011; 67: 5851
    • 4f Spencer WT. III, Vaidya T, Frontier AJ. Eur. J. Org. Chem. 2013; 3621
    • 4g Di Grandi MJ. Org. Biomol. Chem. 2014; 12: 5331
    • 4h Wenz DR, Read de Alaniz J. Eur. J. Org. Chem. 2015; 23
    • 4i Vinogradov MG, Turova OV, Zlotin SG. Org. Biomol. Chem. 2017; 15: 8245

      For examples, see:
    • 5a Weinreb SM, Auerbach J. J. Am. Chem. Soc. 1975; 97: 2503
    • 5b Kim S.-H, Cha JK. Synthesis 2000; 2113
    • 5c Li W.-DZ, Wang Y.-Q. Org. Lett. 2003; 5: 2931
    • 5d He W, Huang J, Sun X, Frontier AJ. J. Am. Chem. Soc. 2007; 129: 498
    • 5e He W, Huang J, Sun X, Frontier AJ. J. Am. Chem. Soc. 2008; 130: 300
    • 5f Williams DR, Robinson LA, Nevill CR, Reddy JP. Angew. Chem. Int. Ed. 2007; 46: 915
    • 5g Bitar AY, Frontier AJ. Org. Lett. 2009; 11: 49
    • 5h Bhattacharya C, Bonfante P, Deagostino A, Kapulnik Y, Larini P, Occhiato EG, Prandi C, Venturello P. Org. Biomol. Chem. 2009; 7: 3413
    • 5i Carlsen PN, Mann TJ, Hoveyda AH, Frontier AJ. Angew. Chem. Int. Ed. 2014; 53: 9334
    • 5j Grant TN, Rieder CJ, West FG. Chem. Commun. 2009; 5676
    • 5k Malona JA, Cariou K, Frontier AJ. J. Am. Chem. Soc. 2009; 131: 7560
    • 5l Churruca F, Fousteris M, Ishikawa Y, von Wantoch Rekowski M, Hounsou C, Surrey T, Giannis A. Org. Lett. 2010; 12: 2096
    • 5m Vaidya T, Eisenberg R, Frontier AJ. ChemCatChem 2011; 3: 1531
    • 5n Magnus P, Freund WA, Moorhead EJ, Rainey T. J. Am. Chem. Soc. 2012; 134: 6140
    • 5o Zhou Z, Tius MA. Angew. Chem. Int. Ed. 2015; 54: 6037
    • 6a Alachouzos G, Frontier AJ. Angew. Chem. Int. Ed. 2017; 56: 15030
    • 6b Alachouzos G, Frontier AJ. J. Am. Chem. Soc. 2019; 141: 118
    • 6c Holt C, Alachouzos G, Frontier AJ. J. Am. Chem. Soc. 2019; 141: 5461
  • 7 Ghavtadze N, Fröhlich R, Bergander K, Würthwein E.-U. Synthesis 2008; 3397
    • 8a Viswanathan GS, Li C.-J. Tetrahedron Lett. 2002; 43: 1613
    • 8b Zhou X, Zhang H, Xie X, Li Y. J. Org. Chem. 2008; 73: 3958
    • 8c Yeh M.-CP, Lin M.-N, Hsu C.-H, Liang C.-J. J. Org. Chem. 2013; 78: 12381
    • 8d Strom KR, Impastato AC, Moy KJ, Landreth AJ, Snyder JK. Org. Lett. 2015; 17: 2126
    • 9a Ye S, Gao K, Zhou H, Yang X, Wu J. Chem. Commun. 2009; 5406
    • 9b Sanz R, Martínez A, García-García P, Fernández-Rodríguez MA, Rashid MA, Rodríguez F. Chem. Commun. 2010; 46: 7427
    • 9c Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 10 Sultana S, Maezono SM. B, Akhtar MS, Shim JJ, Wee YJ, Kim SH, Lee YR. Adv. Synth. Catal. 2018; 360: 751
  • 11 CCDC 1945920 (6ae), CCDC 1945839 (6bb), CCDC 1945927 (6bi), CCDC 1945916 (6bm), CCDC 1945936 (6cm), CCDC 1945919 (8e) and CCDC 1946265 (12) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. See the Supporting Information (SI) for structures.
    • 12a He W, Sun X, Frontier AJ. J. Am. Chem. Soc. 2003; 125: 14278
    • 12b Nie J, Zhu H.-W, Cui H.-F, Hua M.-Q, Ma J.-A. Org. Lett. 2007; 9: 3053
    • 12c Xi Z.-G, Zhu L, Luo S, Cheng J.-P. J. Org. Chem. 2013; 78: 606
    • 12d Zhu L, Xi Z.-G, Lv J, Luo S. Org. Lett. 2013; 15: 4496
    • 12e Zhu Y.-P, Cai Q, Jia F.-C, Liu M.-C, Gao Q.-H, Meng X.-G, Wu A.-X. Tetrahedron 2014; 70: 9536
    • 12f Carmichael RA, Sophanpanichkul P, Chalifoux WA. Org. Lett. 2017; 19: 2592
  • 13 During the completion and submission of our work a conceptionally similar paper appeared; see: Sultana S, Lee YR. Adv. Synth. Catal. 2020; 362: 927
  • 14 Dückert H, Khedkar V, Waldmann H, Kumar K. Chem. Eur. J. 2011; 17: 5130
  • 15 Levi ZU, Tilley TD. J. Am. Chem. Soc. 2009; 131: 2796
  • 16 Shairgojray BA, Dar AA, Bhat BA. Tetrahedron Lett. 2013; 54: 2391
  • 17 Adary EM, Chang C.-W, D’ Auria DT, Nguyen PM, Polewacz K, Reinicke JA, Seo H, Berger GO. Tetrahedron Lett. 2015; 56: 386

Zoom Image
Scheme 1 Oxy- and halo-Nazarov cyclization processes (LA = Lewis acid­)
Zoom Image
Scheme 2 Strategies for 2-arylpyridines and haloindenes
Zoom Image
Scheme 3 Substrate scope for 3-fluoro-functionalized 1H-indene synthesis. Reagents and conditions: 3 (0.172 mmol), 4 (0.172 mmol), BF3·OEt2 (2.5 equiv), CH2Cl2 (2 mL), rt, 1.5–6.5 h. Isolated yields were recorded.
Zoom Image
Scheme 4 Substrate scope for 3-chloro-functionalized 1H-indene synthesis. Reagents and conditions: 3 (0.172 mmol), 4 (0.172 mmol), BCl3 (2.5 equiv), CH2Cl2 (2 mL), rt, 1–7 h. Isolated yields were recorded.
Zoom Image
Scheme 5 Substrate scope for 3-bromo-functionalized 1H-indene synthesis­ and a gram-scale reaction. Reagents and conditions: 3 (0.172 mmol), 4 (0.172 mmol), BBr3 (2.5 equiv), CH2Cl2 (2 mL), rt, 2.5–8 h. Isolated yields were recorded. a BBr3 (3.5 equiv) used.
Zoom Image
Scheme 6 Substrate scope for coumarin-based 3-halo-functionalized 1H-indene synthesis. Reagents and conditions: 7 (0.172 mmol), 4 (0.172 mmol), BX3 (2.5 equiv), CH2Cl2 (2 mL), rt, 4–11 h. Isolated yields were recorded.
Zoom Image
Scheme 7 Reactivity of alkyne with an electron-withdrawing group on the aryl ring and scope of other aldehydes
Zoom Image
Scheme 8 Plausible mechanism (F incorporation in 6aa is representative)