Synthesis 2020; 52(15): 2245-2258
DOI: 10.1055/s-0039-1690881
paper
© Georg Thieme Verlag Stuttgart · New York

BX3-Mediated Intermolecular Formation of Functionalized 3-Halo-1H-indenes via Cascade Halo-Nazarov-Type Cyclization

Anupama Kumari
,
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India   Email: rfernand@chem.iitb.ac.in
› Author Affiliations
This work was supported by the Science and Engineering Research Board (SERB) New Delhi, Grant No. EMR/2017/000499.
Further Information

Publication History

Received: 31 January 2020

Accepted after revision: 10 March 2020

Publication Date:
06 April 2020 (online)


Abstract

A BX3-promoted, intermolecular regioselective synthesis of 3-halo-functionalized 1H-indenes from 4-oxo-4H-chromene-3-carb­aldehydes and alkynes has been developed. BX3 displays a dual role of Lewis acid catalyst and halide source for haloallyl cation formation for the intended halo-Nazarov-type cyclization. The overall transformation represents an efficient cascade annulation that employs readily available starting materials, inexpensive reagents and a convenient and mild reaction procedure to generate halo-functionalized indenes (45 examples). The reaction was also extended to 8-formylcoumarins to deliver coumarin-based 3-halo-1H-indenes in 79–95% yield (6 examples). The reaction involves conversion of the aldehyde into an sp3 carbon with two new C–C bonds and additionally a C–X bond is formed (X = halide).

Supporting Information

 
  • References


    • For examples, see:
    • 1a Adesanya SA, Nia R, Martin M.-T, Boukamcha N, Montagnac A, Païs M. J. Nat. Prod. 1999; 62: 1694
    • 1b Huang K.-S, Wang Y.-H, Li R.-L, Lin M. Phytochemistry 2000; 54: 875
    • 1c Yu H, Kim IJ, Folk JE, Tian X, Rothman RB, Baumann MH, Dersch CM, Flippen-Anderson JL, Parrish D, Jacobson AE, Rice KC. J. Med. Chem. 2004; 47: 2624
    • 1d Clegg NJ, Paruthiyil S, Leitman DC, Scanlan TS. J. Med. Chem. 2005; 48: 5989
    • 1e Majetich G, Shimkus JM. J. Nat. Prod. 2010; 73: 284
    • 1f Liedtke AJ, Crews BC, Daniel CM, Blobaum AL, Kingsley PJ, Ghebreselasie K, Marnett LJ. J. Med. Chem. 2012; 55: 2287
    • 1g Vilums M, Heuberger J, Heitman LH, Ijzerman AP. Med. Res. Rev. 2015; 35: 1097

      For examples, see:
    • 2a Dyrager C, Möllers LN, Kjäll LK, Alao JP, Diner P, Wallner FK, Sunnerhagen P, Grøtli M. J. Med. Chem. 2011; 54: 7427
    • 2b Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F. Chem. Rev. 2014; 114: 4960
    • 2c Keri RS, Budagumpi S, Pai RK, Balakrishna RG. Eur. J. Med. Chem. 2014; 78: 340
    • 2d Silva CF. M, Pinto DC. G. A, Silva AM. S. ChemMedChem. 2016; 11: 2252
    • 2e Reis J, Gaspar A, Milhazes N, Borges F. J. Med. Chem. 2017; 60: 7941
    • 2f Li F, Wu J.-J, Wang J, Yang X.-L, Cai P, Liu Q.-H, Kong L.-Y, Wang X.-B. Bioorg. Med. Chem. 2017; 25: 3815

      For examples, see:
    • 3a Meunier B. Acc. Chem. Res. 2008; 41: 69
    • 3b Decker M. Curr. Med. Chem. 2011; 18: 1464
    • 3c Lödige M, Hiersch L. Int. J. Med. Chem. 2015; DOI: doi: 10.1155/2015/458319.
    • 3d Bérubé G. Expert Opin. Drug Discovery 2016; 11: 281
    • 3e Agarwal D, Gupta RD, Awasthi SK. Antimicrob. Agents Chemother. 2017; 61: 1

      For some informative reviews, see:
    • 4a Denmark SE. Compr. Org. Synth. 1991; 5: 751
    • 4b Santelli-Rouvier C, Santelli M. Synthesis 1983; 429
    • 4c Tius MA. Eur. J. Org. Chem. 2005; 2193
    • 4d Nakanishi W, West FG. Curr. Opin. Drug Discovery Dev. 2009; 12: 732
    • 4e Shimada N, Stewart C, Tius MA. Tetrahedron 2011; 67: 5851
    • 4f Spencer WT. III, Vaidya T, Frontier AJ. Eur. J. Org. Chem. 2013; 3621
    • 4g Di Grandi MJ. Org. Biomol. Chem. 2014; 12: 5331
    • 4h Wenz DR, Read de Alaniz J. Eur. J. Org. Chem. 2015; 23
    • 4i Vinogradov MG, Turova OV, Zlotin SG. Org. Biomol. Chem. 2017; 15: 8245

      For examples, see:
    • 5a Weinreb SM, Auerbach J. J. Am. Chem. Soc. 1975; 97: 2503
    • 5b Kim S.-H, Cha JK. Synthesis 2000; 2113
    • 5c Li W.-DZ, Wang Y.-Q. Org. Lett. 2003; 5: 2931
    • 5d He W, Huang J, Sun X, Frontier AJ. J. Am. Chem. Soc. 2007; 129: 498
    • 5e He W, Huang J, Sun X, Frontier AJ. J. Am. Chem. Soc. 2008; 130: 300
    • 5f Williams DR, Robinson LA, Nevill CR, Reddy JP. Angew. Chem. Int. Ed. 2007; 46: 915
    • 5g Bitar AY, Frontier AJ. Org. Lett. 2009; 11: 49
    • 5h Bhattacharya C, Bonfante P, Deagostino A, Kapulnik Y, Larini P, Occhiato EG, Prandi C, Venturello P. Org. Biomol. Chem. 2009; 7: 3413
    • 5i Carlsen PN, Mann TJ, Hoveyda AH, Frontier AJ. Angew. Chem. Int. Ed. 2014; 53: 9334
    • 5j Grant TN, Rieder CJ, West FG. Chem. Commun. 2009; 5676
    • 5k Malona JA, Cariou K, Frontier AJ. J. Am. Chem. Soc. 2009; 131: 7560
    • 5l Churruca F, Fousteris M, Ishikawa Y, von Wantoch Rekowski M, Hounsou C, Surrey T, Giannis A. Org. Lett. 2010; 12: 2096
    • 5m Vaidya T, Eisenberg R, Frontier AJ. ChemCatChem 2011; 3: 1531
    • 5n Magnus P, Freund WA, Moorhead EJ, Rainey T. J. Am. Chem. Soc. 2012; 134: 6140
    • 5o Zhou Z, Tius MA. Angew. Chem. Int. Ed. 2015; 54: 6037
    • 6a Alachouzos G, Frontier AJ. Angew. Chem. Int. Ed. 2017; 56: 15030
    • 6b Alachouzos G, Frontier AJ. J. Am. Chem. Soc. 2019; 141: 118
    • 6c Holt C, Alachouzos G, Frontier AJ. J. Am. Chem. Soc. 2019; 141: 5461
  • 7 Ghavtadze N, Fröhlich R, Bergander K, Würthwein E.-U. Synthesis 2008; 3397
    • 8a Viswanathan GS, Li C.-J. Tetrahedron Lett. 2002; 43: 1613
    • 8b Zhou X, Zhang H, Xie X, Li Y. J. Org. Chem. 2008; 73: 3958
    • 8c Yeh M.-CP, Lin M.-N, Hsu C.-H, Liang C.-J. J. Org. Chem. 2013; 78: 12381
    • 8d Strom KR, Impastato AC, Moy KJ, Landreth AJ, Snyder JK. Org. Lett. 2015; 17: 2126
    • 9a Ye S, Gao K, Zhou H, Yang X, Wu J. Chem. Commun. 2009; 5406
    • 9b Sanz R, Martínez A, García-García P, Fernández-Rodríguez MA, Rashid MA, Rodríguez F. Chem. Commun. 2010; 46: 7427
    • 9c Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 10 Sultana S, Maezono SM. B, Akhtar MS, Shim JJ, Wee YJ, Kim SH, Lee YR. Adv. Synth. Catal. 2018; 360: 751
  • 11 CCDC 1945920 (6ae), CCDC 1945839 (6bb), CCDC 1945927 (6bi), CCDC 1945916 (6bm), CCDC 1945936 (6cm), CCDC 1945919 (8e) and CCDC 1946265 (12) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. See the Supporting Information (SI) for structures.
    • 12a He W, Sun X, Frontier AJ. J. Am. Chem. Soc. 2003; 125: 14278
    • 12b Nie J, Zhu H.-W, Cui H.-F, Hua M.-Q, Ma J.-A. Org. Lett. 2007; 9: 3053
    • 12c Xi Z.-G, Zhu L, Luo S, Cheng J.-P. J. Org. Chem. 2013; 78: 606
    • 12d Zhu L, Xi Z.-G, Lv J, Luo S. Org. Lett. 2013; 15: 4496
    • 12e Zhu Y.-P, Cai Q, Jia F.-C, Liu M.-C, Gao Q.-H, Meng X.-G, Wu A.-X. Tetrahedron 2014; 70: 9536
    • 12f Carmichael RA, Sophanpanichkul P, Chalifoux WA. Org. Lett. 2017; 19: 2592
  • 13 During the completion and submission of our work a conceptionally similar paper appeared; see: Sultana S, Lee YR. Adv. Synth. Catal. 2020; 362: 927
  • 14 Dückert H, Khedkar V, Waldmann H, Kumar K. Chem. Eur. J. 2011; 17: 5130
  • 15 Levi ZU, Tilley TD. J. Am. Chem. Soc. 2009; 131: 2796
  • 16 Shairgojray BA, Dar AA, Bhat BA. Tetrahedron Lett. 2013; 54: 2391
  • 17 Adary EM, Chang C.-W, D’ Auria DT, Nguyen PM, Polewacz K, Reinicke JA, Seo H, Berger GO. Tetrahedron Lett. 2015; 56: 386