Synthesis 2020; 52(07): 949-963
DOI: 10.1055/s-0039-1690813
review
© Georg Thieme Verlag Stuttgart · New York

Iron Catalysis in Target Synthesis

Peter DaBell
,
School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, EH9 3FK, UK   Email: stephen.thomas@ed.ac.uk
› Author Affiliations
We would like to thank the Engineering and Physical Sciences Research Council and CRITICAT Centre for Doctoral Training for financial support [PhD studentship to P.D.; Grant code EP/L0161419/1].
Further Information

Publication History

Received: 09 December 2019

Accepted after revision: 19 January 2020

Publication Date:
05 February 2020 (online)


Abstract

The use of iron-catalysed organic transformations in the total syntheses of natural products has increased significantly. Iron-catalysed cross-coupling reactions are now widely applied in total syntheses and many other transformations, such as alkene functionalisation, oxidation, and cyclisation. The development of these processes, as well as many examples of their use in target synthesis, is presented here.

1 Introduction

2 Cross-Coupling Reactions

3 Functionalisation of Unactivated Alkenes

4 Carbocyclisation Reactions

5 Oxidations

6 Further Examples

7 Conclusions

 
  • References

  • 1 Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
  • 2 Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170
  • 3 Iron Catalysis in Organic Chemistry: Reactions and Applications. Plietker B. Wiley-VCH; Weinheim: 2008
  • 4 Plietker B, Dieskau A. Eur. J. Org. Chem. 2009; 775
  • 5 Czaplik WM, Mayer M, Cvengroš J, Jacobi von Wangelin A. ChemSusChem 2009; 2: 396
  • 6 Perutz MF. Ann. Rev. Biochem. 1979; 48: 327
  • 7 Handbook on the Toxicology of Metals, 2nd ed. Friberg L, Nordberg GF, Vouk VB. Elsevier; Amsterdam: 1986
  • 8 Ghosh M, Singh KK, Panda C, Weitz A, Hendrich MP, Collins TJ, Dhar BB, Sen Gupta S. J. Am. Chem. Soc. 2014; 136: 9524
  • 9 Chen MS, White MC. Science 2007; 318: 783
  • 10 Padron JI, Martin VS. Top. Organomet. Chem. 2011; 33: 1
  • 11 Fürstner A, Martin R. Chem. Lett. 2005; 34: 624
  • 12 Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
  • 13 Kharasch MS, Fields EK. J. Am. Chem. Soc. 1941; 63: 2316
  • 14 Tamura M, Kochi JK. J. Am. Chem. Soc. 1971; 93: 1487
  • 15 Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
  • 16 Corriu RJ. P, Masse JP. J. Chem. Soc., Chem. Commun. 1972; 144
  • 17 Cahiez G, Avedissian H. Synthesis 1998; 1199
  • 18 Dohle W, Kopp F, Cahiez G, Knochel P. Synlett 2001; 1901
  • 19 Camacho-Dávila AA. Synth. Commun. 2008; 38: 3823
  • 20 Robinson JE, Taylor RJ. K. Chem. Commun. 2007; 1617
  • 21 Gaukroger K, Hadfield JA, Hepworth LA, Lawrence NJ, McGown AT. J. Org. Chem. 2001; 66: 8135
  • 22 Lawrence NJ, Muhammad F. Tetrahedron 1998; 54: 15345
  • 23 Tewari N, Maheshwari N, Medhane R, Nizar H, Prasad M. Org. Process Res. Dev. 2012; 16: 1566
  • 24 Fürstner A, Leitner A. Angew. Chem. Int. Ed. 2002; 41: 609
  • 25 Scheiper B, Glorius F, Leitner A, Fürstner A. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 11960
  • 26 Fürstner A, Leitner A, Méndez M, Krause H. J. Am. Chem. Soc. 2002; 124: 13856
  • 27 Bogdanović B, Schwickardi M. Angew. Chem. Int. Ed. 2000; 39: 4610
  • 28 Bedford RB, Bruce DW, Frost RM, Hird M. Chem. Commun. 2005; 4161
  • 29 Bedford RB, Betham M, Bruce DW, Davis SA, Frost RM, Hird M. Chem. Commun. 2006; 1398
  • 30 Nakamura M, Matsuo K, Ito S, Nakamura E. J. Am. Chem. Soc. 2004; 126: 3686
  • 31 Bedford RB. Acc. Chem. Res. 2015; 48: 1485
  • 32 Adams CJ, Bedford RB, Carter E, Gower NJ, Haddow MF, Harvey JN, Huwe M, Cartes M. Á, Mansell SM, Mendoza C, Murphy DM, Neeve EC, Nunn J. J. Am. Chem. Soc. 2012; 134: 10333
  • 33 Bedford RB, Carter E, Cogswell PM, Gower NJ, Haddow MF, Harvey JN, Murphy DM, Neeve EC, Nunn J. Angew. Chem. Int. Ed. 2013; 52: 1285
  • 34 Kleimark J, Hedström A, Larsson P.-F, Johansson C, Norrby P.-O. ChemCatChem 2009; 1: 152
  • 35 Bedford RB, Brenner PB, Carter E, Cogswell PM, Haddow MF, Harvey JN, Murphy DM, Nunn J, Woodall CH. Angew. Chem. Int. Ed. 2014; 53: 1804
  • 36 O’Brien HM, Manzotti M, Abrams RD, Elorriaga D, Sparkes HA, Davis SA, Bedford RB. Nat. Catal. 2018; 1: 429
  • 37 Fleischauer VE, Muñoz SB. III, Neate PG. N, Brennessel WW, Neidig ML. Chem. Sci. 2018; 9: 1878
  • 38 Scheiper B, Bonnekessel M, Krause H, Fürstner A. J. Org. Chem. 2004; 69: 3943
  • 39 Hamajima A, Isobe M. Org. Lett. 2006; 8: 1205
  • 40 Fürstner A, Hannen P. Chem. Eur. J. 2006; 12: 3006
  • 41 Boukouvalas J, Albert V, Loach RP, Lafleur-Lambert R. Tetrahedron 2012; 68: 9592
  • 42 Seidel G, Laurich D, Fürstner A. J. Org. Chem. 2004; 69: 3950
  • 43 Fürstner A, Leitner A. Angew. Chem. Int. Ed. 2003; 42: 308
  • 44 Cahiez G, Gager O, Habiak V. Synthesis 2008; 2636
  • 45 Scheerer JR, Lawrence JF, Wang GC, Evans DA. J. Am. Chem. Soc. 2007; 129: 8968
  • 46 Guérinot A, Reymond S, Cossy J. Angew. Chem. Int. Ed. 2007; 46: 6521
  • 47 Bensoussan C, Rival N, Hanquet G, Colobert F, Reymond S, Cossy J. Tetrahedron 2013; 69: 7759
  • 48 Gregg C, Gunawan C, Ng AW. Y, Wimala S, Wickremasinghe S, Rizzacasa MA. Org. Lett. 2013; 15: 516
  • 49 Yamada K.-i, Sato T, Hosoi M, Yamamoto Y, Tomioka K. Chem. Pharm. Bull. 2010; 58: 1511
  • 50 Sherry BD, Fürstner A. Acc. Chem. Res. 2008; 41: 1500
  • 51 Lehr K, Fürstner A. Tetrahedron 2012; 68: 7695
  • 52 Fürstner A, De Souza D, Parra-Rapado L, Jensen JT. Angew. Chem. Int. Ed. 2003; 42: 5358
  • 53 Greenhalgh MD, Kolodziej A, Sinclair F, Thomas SP. Organometallics 2014; 33: 5811
  • 54 Greenhalgh MD, Thomas SP. J. Am. Chem. Soc. 2012; 134: 11900
  • 55 Jones AS, Paliga JF, Greenhalgh MD, Quibell JM, Steven A, Thomas SP. Org. Lett. 2014; 16: 5964
  • 56 Plietker B. Angew. Chem. Int. Ed. 2006; 45: 1469
  • 57 Lindermayr K, Plietker B. Angew. Chem. Int. Ed. 2013; 52: 12183
  • 58 Villa M, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2015; 54: 11906
  • 59 MacNair AJ, Tran M.-M, Nelson JE, Sloan GU, Ironmonger A, Thomas SP. Org. Biomol. Chem. 2014; 12: 5082
  • 60 Ashby EC, Lin JJ. Tetrahedron Lett. 1977; 18: 4481
  • 61 Ashby EC, Lin JJ. J. Org. Chem. 1978; 43: 2567
  • 62 Kano K, Takeuchi M, Hashimoto S, Yoshida Z.-i. J. Chem. Soc. Chem. Commun. 1991; 1728
  • 63 Takeuchi M, Kano K. Organometallics 1993; 12: 2059
  • 64 Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
  • 65 Ishikawa H, Colby DA, Boger DL. J. Am. Chem. Soc. 2008; 130: 420
  • 66 Ishikawa H, Colby DA, Seto S, Va P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL. J. Am. Chem. Soc. 2009; 131: 4904
  • 67 Lo JC, Yabe Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 1304
  • 68 Lo JC, Gui J, Yabe Y, Pan C.-M, Baran PS. Nature 2014; 516: 343
  • 69 Gui J, Pan C.-M, Jin Y, Qin T, Lo JC, Lee BJ, Spergel SH, Mertzman ME, Pitts WJ, La Cruz TE, Schmidt MA, Darvatkar N, Natarajan SR, Baran PS. Science 2015; 348: 886
  • 70 Romero D, Olmsted R, Poel TJ, Morge RA, Biles C, Keiser BJ, Kopta LJ, Friis JM, Hosley JD, Stefanski KJ, Wishka DG, Evans DB, Morris J, Stehle RG, Sharma SK, Yagi Y, Voorman RL, Asams WJ, Tarpley WG, Thomas RC. J. Med. Chem. 1996; 39: 3769
  • 71 Zhu K, Shaver MP, Thomas SP. Chem. Sci. 2016; 7: 3031
  • 72 Zhu K, Shaver MP, Thomas SP. Chem. Asian J. 2016; 11: 977
  • 73 Takacs BE, Takacs JM. Tetrahedron Lett. 1990; 31: 2865
  • 74 Takacs JM, Newsome PW, Kuehn C, Takusagawa F. Tetrahedron 1990; 46: 5507
  • 75 Takacs JM, Myoung YC. Tetrahedron Lett. 1992; 33: 317
  • 76 Takacs JM, Boito SC. Tetrahedron Lett. 1995; 36: 2941
  • 77 Takacs JM, Vayalakkada S, Mehrman SJ, Kingsbury CL. Tetrahedron Lett. 2002; 43: 8417
  • 78 Usuda H, Kuramochi A, Kanai M, Shibasaki M. Org. Lett. 2004; 6: 4387
  • 79 Dethe DH, Murhade G. Org. Lett. 2013; 15: 429
  • 80 Meunier B, de Visser SP, Shaik S. Chem. Rev. 2004; 104: 3947
  • 81 Costas M, Mehn MP, Jensen MP, Que L. Chem. Rev. 2004; 104: 939
  • 82 Bordeaux M, Galarneau A, Drone J. Angew. Chem. Int. Ed. 2012; 51: 10712
  • 83 Que LJr, Tolman WB. Nature 2008; 455: 333
  • 84 Abu-Omar MM, Loaiza A, Hontzeas N. Chem. Rev. 2005; 105: 2227
  • 85 Bigi MA, Reed SA, White MC. Nat. Chem. 2011; 3: 216
  • 86 Bigi MA, Liu P, Zou L, Houk KN, White MC. Synlett 2012; 23: 2768
  • 87 Simon JD, Peles DN. Acc. Chem. Res. 2010; 43: 1452
  • 88 Que L, Ho RY. N. Chem. Rev. 1996; 96: 2607
  • 89 Guimond N, Mayer P, Trauner D. Chem. Eur. J. 2014; 20: 9519
  • 90 Davies HM. L, Du Bois J, Yu J.-Q. Chem. Soc. Rev. 2011; 40: 1855
  • 91 Jeffrey JL, Sarpong R. Chem. Sci. 2013; 4: 4092
  • 92 Louillat M.-L, Patureau FW. Chem. Soc. Rev. 2014; 43: 901
  • 93 Michaudel Q, Thevenet D, Baran PS. J. Am. Chem. Soc. 2012; 134: 2547
  • 94 Sharma A, Hartwig JF. Nature 2015; 517: 600
  • 95 Liu K, Li Y, Zheng X, Liu W, Li Z. Tetrahedron 2012; 68: 10333
  • 96 Lv L, Shen B, Li Z. Angew. Chem. Int. Ed. 2014; 53: 4164
  • 97 Fürstner A, Méndez M. Angew. Chem. Int. Ed. 2003; 42: 5355
  • 98 Fürstner A, Kattnig E, Lepage O. J. Am. Chem. Soc. 2006; 128: 9194
  • 99 Petrignet J, Prathap I, Chandrasekhar S, Yadav JS, Grée R. Angew. Chem. Int. Ed. 2007; 46: 6297
  • 100 Mac DH, Samineni R, Sattar A, Chandrasekhar S, Yadav JS, Grée R. Tetrahedron 2011; 67: 9305
  • 101 Molander GA, Shakya SR. J. Org. Chem. 1994; 59: 3445
  • 102 Perron F, Albizati KF. Chem. Rev. 1989; 89: 1617
  • 103 Kunz H, Müller B, Weissmüller J. Carbohyd. Res. 1987; 171: 25
  • 104 van der Does T, Klumpp GH. Tetrahedron Lett. 1986; 27: 519
  • 105 Rueping M, Nachtsheim BJ. Beilstein J. Org. Chem. 2010; 6: 6
  • 106 Gauvreau D, Dolman SJ, Hughes G, O’Shea PD, Davies IW. J. Org. Chem. 2010; 75: 4078
  • 107 Oh E, Kim J, Oh T, Su J, Yun I, Nam K, Min J, Kim W, Koo S. Eur. J. Org. Chem. 2012; 4
  • 108 Blay G, Montesinos-Magraner M, Pedro JR. Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds . Mortier J. Wiley; Hoboken: 2016: 33-58
  • 109 Stadler D, Bach T. Angew. Chem. Int. Ed. 2008; 47: 7557