Synthesis 2019; 51(07): 1529-1544
DOI: 10.1055/s-0037-1612123
short review
© Georg Thieme Verlag Stuttgart · New York

Silicon-Tethered Frameworks as Directing Groups for Carbon–Carbon and Carbon–Heteroatom Bond Formation

,
Xiao-Wen Zhang
,
Wen-Bo Liu*
Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Rd, Wuhan 430072, Hubei, P. R. of China   Email: wenboliu@whu.edu.cn
› Author Affiliations
We gratefully acknowledge the National Natural Science Foundation of China (21602160, 21772148), the National Program for 1000 Young Talents of China, and Wuhan University for financial support.
Further Information

Publication History

Received: 09 December 2018

Accepted after revision: 08 January 2019

Publication Date:
05 March 2019 (online)


Abstract

Recent advances in the use of silicon-tethered frameworks as directing groups for the efficient construction of C–C, C–B, C–O and C–X (X = halogen) bonds are discussed in this short review. In addition, mechanistic insights are briefly discussed. Hence, the goal of this short review is to give an overview of the state of the art in this field, encompassing the reactivity, selectivity and efficiency of different processes.

1 Introduction

2 Carbon–Carbon Bond Formation

2.1 Alkenylation

2.2 Arylation

2.3 Carbonylation

3 Carbon–Boron Bond Formation

4 Carbon–Oxygen and Carbon–Halogen Bond Formation

5 Conclusion

 
  • References

    • 1a Nguyen TH. L, Gigant N, Joseph D. ACS Catal. 2018; 8: 1546
    • 1b Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
    • 1c Hummel JR, Boerth JA, Ellman JA. Chem. Rev. 2017; 117: 9163
    • 1d Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 1e Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
  • 2 Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 3a Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 3b Pototschnig G, Maulide N, Schnerch M. Chem. Eur. J. 2017; 23: 9206
    • 3c Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
  • 5 Denmark SE, Regens CS. Acc. Chem. Res. 2008; 41: 1486
  • 6 Jones GR, Landais Y. Tetrahedron 1996; 52: 7599
  • 9 Lu Y, Wang D.-H, Engle KM, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 5916
  • 10 Mewald M, Schiffner JA, Oestreich M. Angew. Chem. Int. Ed. 2012; 51: 1763 ; and references therein
    • 11a Huang C, Chattopadhyay B, Gevorgyan V. J. Am. Chem. Soc. 2011; 133: 12406
    • 11b Wang C, Ge H. Chem. Eur. J. 2011; 17: 14371
  • 12 Becker P, Priebbenow DL, Pirwerdjan R, Bolm C. Angew. Chem. Int. Ed. 2014; 53: 269
  • 13 Leow D, Li G, Mei T.-S, Yu J.-Q. Nature 2012; 486: 518
    • 14a Lee S, Lee H, Tan KL. J. Am. Chem. Soc. 2013; 135: 18778
    • 14b Mi R.-J, Sun Y.-Z, Wang J.-Y, Sun J, Xu Z, Zhou M.-D. Org. Lett. 2018; 20: 5126
  • 15 Bag S, Patra T, Modak A, Deb A, Maity S, Dutta U, Dey A, Kancherla R, Maji A, Hazra A, Bera M, Maiti D. J. Am. Chem. Soc. 2015; 137: 11888
  • 16 Patra T, Bag S, Kancherla R, Mondal A, Dey A, Pimparkar S, Agasti S, Modak A, Maiti D. Angew. Chem. Int. Ed. 2016; 55: 7751
    • 17a Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 17b Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 18a Itami K, Yoshida J.-i. Synlett 2006; 157
    • 18b Itami K, Mitsudo K, Kamei T, Koike T, Nokami T, Yoshida J.-i. J. Am. Chem. Soc. 2000; 122: 12013
  • 19 Itami K, Nokami T, Yoshida J.-i. J. Am. Chem. Soc. 2001; 123: 5600
    • 20a Itami K, Nokami T, Ishimura Y, Mitsudo K, Kamei T, Yoshida J.-i. J. Am. Chem. Soc. 2001; 123: 11577
    • 20b Itami K, Ohashi Y, Yoshida J.-i. J. Org. Chem. 2005; 70: 2778
    • 22a Ilies L, Okabe J, Yoshikai N, Nakamura E. Org. Lett. 2010; 12: 2838
    • 22b Li W, Boon JK, Zhao Y. Chem. Sci. 2018; 9: 600
    • 23a Itami K, Kamei T, Yoshida J.-i. J. Am. Chem. Soc. 2003; 125: 14670
    • 23b Kamei T, Itami K, Yoshida J.-i. Adv. Synth. Catal. 2004; 346: 1824
    • 24a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 24b Toutov AA, Betz KN, Schuman DP, Liu W.-B, Fedorov A, Stoltz BM, Grubbs RH. J. Am. Chem. Soc. 2017; 139: 1668
    • 25a Pu L. Chem. Rev. 1998; 98: 2405
    • 25b Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 25c Kalstabakken KA, Harned AM. Tetrahedron 2014; 70: 9571

    • For selected examples of the synthesis of dibenzooxa­silines, see:
    • 25d Zhao W.-T, Lu Z.-Q, Zheng H, Xue X.-S, Zhao D. ACS Catal. 2018; 8: 7997
    • 25e Zhang Q.-W, An K, He W. Angew. Chem. Int. Ed. 2014; 53: 5667
    • 25f Zhang Q.-W, An K, Liu L.-C, Yue Y, He W. Angew. Chem. Int. Ed. 2015; 54: 6918
    • 25g Zhang Q.-W, An K, Liu L.-C, Guo S, Jiang C, Guo H, He W. Angew. Chem. Int. Ed. 2016; 55: 6319
    • 26a Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 26b Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 27a Takada T, Arisawa M, Gyoten M, Hamada R, Tohma H, Kita Y. J. Org. Chem. 1998; 63: 7698
    • 27b Schmittel M, Haeuseler A. Z. Naturforsch. B 2003; 58: 211
    • 28a Shimizu M, Mochida K, Hiyama T. Angew. Chem. Int. Ed. 2008; 47: 9760
    • 28b Mochida K, Shimizu M, Hiyama T. J. Am. Chem. Soc. 2009; 131: 8350
  • 29 Huang C, Gevorgyan V. J. Am. Chem. Soc. 2009; 131: 10844
  • 30 Huang C, Gevorgyan V. Org. Lett. 2010; 12: 2442
    • 31a Wang Y, Gevorgyan V. Angew. Chem. Int. Ed. 2015; 54: 2255
    • 31b Wang Y, Gevorgyan V. Angew. Chem. Int. Ed. 2017; 56: 3191 ; and references therein
    • 32a Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 32b Hartwig JF. Chem. Res. 2012; 45: 864
  • 33 Boebel TA, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 7534
  • 34 Robbins DW, Boebel TA, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 4068
  • 35 Cho SH, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 8157
  • 36 Cho SH, Hartwig JF. Chem. Sci. 2014; 5: 694
  • 37 Larsen MA, Cho SH, Hartwig J. J. Am. Chem. Soc. 2016; 138: 762
  • 38 Su B, Zhou T.-G, Xu P.-L, Shi Z.-J, Hartwig JF. Angew. Chem. Int. Ed. 2017; 56: 7205
  • 39 Su B, Zhou T.-G, Li X.-W, Shao X.-R, Xu P.-L, Wu W.-L, Hartwig JF, Shi Z.-J. Angew. Chem. Int. Ed. 2017; 56: 1092
  • 40 Su B, Hartwig JF. Angew. Chem. Int. Ed. 2018; 57: 10163
    • 41a Enthaler S, Company A. Chem. Soc. Rev. 2011; 40: 4912
    • 41b Yu J.-Q, Giri R, Chen X. Org. Biomol. Chem. 2006; 4: 4041
    • 41c Mirjafary Z, Abdoli M, Saeidian H, Boroon S, Kakanejadifard A. RSC Adv. 2015; 5: 79361
  • 42 Huang H, Cai J, Deng G.-J. Org. Biomol. Chem. 2016; 14: 1519
  • 43 Ghavtadze N, Melkonyan FS, Gulevich AV, Huang C, Gevorgyan V. Nat. Chem. 2014; 6: 122
    • 44a Chernyak N, Dudnik AS, Huang C, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 8270
    • 44b Huang C, Chernyak N, Dudnik AS, Gevorgyan V. Adv. Synth. Catal. 2011; 353: 1285
  • 45 Dudnik AS, Chernyak N, Huang C, Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 8729
    • 46a Samarakoon TB, Hur MY, Kurtz RD, Hanson PR. Org. Lett. 2010; 12: 2182
    • 46b Tejedor D, Méndez-Abt G, González-Platas J, Ramírez MA, García-Tellado F. Chem. Commun. 2009; 2368
  • 47 Gulevich AV, Melkonyan FS, Sarkar D, Gevorgyan V. J. Am. Chem. Soc. 2012; 134: 5528
  • 48 Sarkar D, Gulevich AV, Melkonyan FS, Gevorgyan V. ACS Catal. 2015; 5: 6792
  • 49 Sarkar D, Melkonyan FS, Gulevich AV, Gevorgyan V. Angew. Chem. Int. Ed. 2013; 52: 10800
    • 50a Berberian V, Allen CC. R, Sharma ND, Boyd DR, Hardacre C. Adv. Synth. Catal. 2007; 349: 727
    • 50b Schweigert N, Zehnder AJ. B, Eggen RI. L. Environ. Microbiol. 2001; 3: 81
  • 51 Huang C, Ghavtadze N, Chattopadhyay B, Gevorgyan V. J. Am. Chem. Soc. 2011; 133: 17630
    • 52a Wang X, Lu Y, Dai H.-X, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 12203
    • 52b Xiao B, Gong T.-J, Liu Z.-J, Liu J.-H, Luo D.-F, Xu J, Liu L. J. Am. Chem. Soc. 2011; 133: 9250
  • 53 Huang C, Ghavtadze N, Godoi B, Gevorgyan V. Chem. Eur. J. 2012; 18: 9789