Synlett 2019; 30(16): 1855-1866
DOI: 10.1055/s-0037-1611899
account
© Georg Thieme Verlag Stuttgart · New York

Nitrosoalkenes: Underappreciated Reactive Intermediates for Formation of Carbon–Carbon Bonds

Steven M. Weinreb
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA   Email: smw@chem.psu.edu
› Author Affiliations
Further Information

Publication History

Received: 07 June 2019

Accepted after revision: 08 July 2019

Publication Date:
22 July 2019 (online)


This paper is dedicated to my longtime friend and colleague, Professor Philip DeShong, on the occasion of his 70th birthday.

Abstract

This Account describes studies carried out by my group during the past decade on both intra- and intermolecular conjugate additions of carbon nucleophiles to nitrosoalkenes. Using the Denmark protocol for the generation of nitrosoalkenes from α-chloro-O-silyloximes, a number of bridged and fused bicyclic ring systems can be prepared via the intramolecular version of this process. Intermolecular conjugate addition reactions of nitrosoalkenes with a wide variety of ester enolates as coupling partners can also be achieved efficiently using a similar procedure. Some stereochemical aspects of these nucleophilic additions have been studied with both acyclic and cyclic nitrosoalkenes. This methodology has been applied as key steps in synthetic approaches to some complex indole and Myrioneuron alkaloids.

1 Introduction

2 Conjugate Additions of Nitrosoalkenes

2.1 Background

2.2 Intramolecular Reactions

2.3 Intermolecular Reactions

2.4 Stereochemical Aspects

3 Applications to Natural Product Synthesis

3.1 Angustilodine and Related Alkaloids

3.2 Approach to Apparicine-Type Alkaloids

3.3 Myrioneurinol

4 Summary and Outlook

 
  • References

    • 2a VanBrunt MP, Ambenge RO, Weinreb SM. J. Org. Chem. 2003; 68: 3323
    • 2b Meketa ML, Mahajan YR, Weinreb SM. Tetrahedron Lett. 2005; 46: 4749
  • 3 Mathaipoulos G. Chem. Ber. 1898; 31: 2396

    • For good reviews on nitrosoalkenes, see:
    • 4a Gilchrist TL. Chem. Soc. Rev. 1983; 12: 53
    • 4b Lyapkalo IM, Ioffe SL. Russ. Chem. Rev. 1998; 67: 467
    • 4c Boyko YD, Dorokhov VS, Sukhorukov AY, Ioffe SL. Beilstein J. Org. Chem. 2017; 13: 2214
    • 4d Lopes SM. M, Cardoso AL, Lemos A, Pinho e Melo TM. V. D. Chem. Rev. 2018; 118: 11324
    • 5a Denmark SE, Dappen MS. J. Org. Chem. 1984; 49: 798
    • 5b Denmark SE, Dappen MS, Sternberg JA. J. Org. Chem. 1984; 49: 4741
    • 5c Denmark SE, Dappen MS, Sear NL, Jacobs RT. J. Am. Chem. Soc. 1990; 112: 3466
    • 6a Hassner A, Murthy K. Tetrahedron Lett. 1987; 28: 683
    • 6b Padwa A, Chiacchio U, Dean DC, Schoffsatll AM, Hassner A, Murthy KS. K. Tetrahedron Lett. 1988; 29: 4169
    • 6c Hassner A, Maurya R, Mesko E. Tetrahedron Lett. 1988; 29: 5313
    • 6d Hassner A, Murthy KS. K, Padwa A, Bullock WH, Stull PD. J. Org. Chem. 1988; 53: 5063
    • 6e Hassner A, Murthy KS. K, Padwa A, Chiacchio U, Dean DC, Schoffstall AM. J. Org. Chem. 1989; 54: 5277
    • 6f Hassner A, Maurya R, Friedman O, Gottlieb HE, Padwa A, Austin D. J. Org. Chem. 1993; 58: 4539
    • 6g Trewartha G, Burrows JN, Barrett AG. M. Tetrahedron Lett. 2005; 46: 3553
    • 7a Hassner A, Maurya R. Tetrahedron Lett. 1989; 30: 5803
    • 7b Kaiser A, Wiegrebe W. Monatsh. Chem. 1998; 129: 937

      For selected examples of enolonium ion equivalents, see:
    • 8a Fuchs PL. J. Org. Chem. 1976; 41: 2935
    • 8b Wender PA, Erhardt JM, Letendre LJ. J. Am. Chem. Soc. 1981; 103: 2114
    • 8c Hatcher JM, Coltart DM. J. Am. Chem. Soc. 2010; 132: 4546
    • 8d Miyoshi T, Miyakawa T, Ueda M, Miyata O. Angew. Chem. Int. Ed. 2011; 50: 928
    • 8e Miyata O, Miyoshi T, Ueda M. ARKIVOC 2013; 60
    • 8f Ciccolini C, De Crescentini L, Mantellini F, Santeusanio S, Favi G. Org. Lett. 2019; 21: 4388
  • 9 For an exception, see: Corey, E. J.; Petrzilka, M.; Ueda, Y. Helv. Chim. Acta 1977, 60, 2294.
    • 10a Korboukh I, Kumar P, Weinreb SM. J. Am. Chem. Soc. 2007; 129: 10342
    • 10b Kumar P, Li P, Korboukh I, Wang TL, Yennawar H, Weinreb SM. J. Org. Chem. 2011; 76: 2094
  • 11 Chaudhari SS, Akamanchi KG. Synthesis 1999; 760
  • 12 Korboukh I. Ph.D. Thesis. The Pennsylvania State University; USA: 2010

    • See for example:
    • 13a Ohno M, Torimitsu S, Naruse N, Okamoto M, Sakai I. Bull. Chem. Soc. Jpn. 1966; 39: 1129
    • 13b Trost BM, Barrett D. Tetrahedron 1996; 52: 6903
    • 13c Corey EJ, Melvin Jr LS, Haslanger MF. Tetrahedron Lett. 1975; 3117
  • 14 Li P, Majireck MM, Witek JA, Weinreb SM. Tetrahedron Lett. 2010; 51: 2032
  • 15 Oppolzer W, Battig K, Hudlicky T. Tetrahedron 1981; 37: 4359
  • 16 Sengupta R, Weinreb SM. Synthesis 2012; 44: 2933
  • 17 Vowinkel E, Bartel J. Chem. Ber. 1974; 107: 1221
  • 18 Witek JA, Weinreb SM. Org. Lett. 2011; 13: 1258
  • 19 Sengupta R, Witek JA, Weinreb SM. Tetrahedron 2011; 67: 8229
    • 20a Kam T.-S, Choo Y.-M. Helv. Chim. Acta 2004; 87: 366
    • 20b Koyama K, Hirasawa Y, Zaima K, Hoe TC, Chan K.-L, Morita H. Bioorg. Med. Chem. 2008; 16: 6483

      For reviews of this chemistry, see:
    • 21a Vellalath S, Romo D. Angew. Chem. Int. Ed. 2016; 55: 2
    • 21b Van K N, Morrill LC, Smith AD, Romo D. Catalytic Generation of Ammonium Enolates and Related Tertiary Amine-Derived Intermediates: Applications, Mechanism, and Stereochemical Models. In Lewis Base Catalysis in Organic Synthesis, Vol. 2. Vedejs E. Denmark SE. Wiley-VCH; Weinheim: 2016: 527
    • 22a Feng Y, Majireck MM, Weinreb SM. Angew. Chem. Int. Ed. 2012; 51: 12846
    • 22b Feng Y, Majireck MM, Weinreb SM. J. Org. Chem. 2014; 79: 7
  • 23 Majireck MM. Ph.D. Thesis. The Pennsylvania State University; USA: 2011
  • 24 Chauhan PS, Majireck MM, Weinreb SM. Heterocycles 2012; 84: 577
  • 25 For a review, see: Alvarez M, Joule JA. Ellipticine, Uleine, Apparicine, and Related Alkaloids . In The Alkaloids, Vol. 57. Cordell GA. Academic Press; New York: 2001: 235
  • 26 Joule JA, Monteiro H, Durham LJ, Gilbert B, Djerassi C. J. Chem. Soc. 1965; 4773
    • 27a Rojas-Hernandez HM, Diaz-Revez C, Coto Perez O. Rev. Cubana Farm. 1977; 11: 249
    • 27b Farnsworth NR, Svoboda GH, Blomster RN. J. Pharm. Sci. 1968; 57: 2174
    • 28a Walser A, Djerassi C. Helv. Chim. Acta 1965; 46: 391
    • 28b Scott AI, Yey C.-L, Greenslade D. J .Chem. Soc. 1978; 947
  • 29 Chauhan PS, Weinreb SM. J. Org. Chem. 2014; 79: 6389
  • 30 Maiti BC, Thomson RH, Mahendran M. J. Chem. Res., Synop. 1978; 126

    • Cf.
    • 31a Runti C. Gazz. Chim. Ital. 1951; 81: 613
    • 31b LeBorgne M, Marchand P, Duflos M, Delevoye-Seiller B, Piessard-Robert S, Le Baut G, Hartmann RW, Palzer M. Arch. Pharm. 1997; 330: 141
  • 32 For a review, see: Gravel, E.; Poupon, E. Nat. Prod. Rep. 2010, 27, 32.
  • 33 Pham VC, Jossang A, Sevenet T, Nguyen VH, Bodo B. Tetrahedron 2007; 63: 11244
    • 34a Nocket AJ, Weinreb SM. Angew. Chem. Int. Ed. 2014; 53: 14162
    • 34b Nocket AJ, Feng Y, Weinreb SM. J. Org. Chem. 2015; 80: 1116
  • 35 Hatcher JM, Kohler MC, Coltart DM. Org. Lett. 2011; 13: 3810
  • 36 Zhang Y, Stephens D, Hernandez G, Mendoza R, Larionov OV. Chem. Eur. J. 2012; 18: 16612
    • 37a Surzur JM, Dupuy C, Bertrand MP, Nouguier R. J. Org. Chem. 1972; 37: 2787
    • 37b Kisan W, Pritzkow W. J. Prakt. Chem. 1978; 320: 59