Synlett 2019; 30(11): 1317-1320
DOI: 10.1055/s-0037-1611849
letter
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Protonation of Silyl Enol Ethers Catalyzed by a Chiral Pentacarboxycyclopentadiene-Based Brønsted Acid

Jun Li
,
Shaoyu An
,
Chao Yuan
,
Pingfan Li*
Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: lipf@mail.buct.edu.cn
› Author Affiliations
Fundamental Research Funds for the Central Universities, (Grant/Award Number: XK-1802-6, 12060093063); National Natural Science Foundation of China, (Grant/Award Number: 21402005).
Further Information

Publication History

Received: 14 April 2019

Accepted after revision: 13 May 2019

Publication Date:
29 May 2019 (online)


Abstract

The enantioselective protonation of silyl enol ethers was realized in the presence of a pentacarboxycyclopenta-1,3-diene-based chiral Brønsted acid catalyst with water as an achiral proton source to give the corresponding α-aryl ketones in good yields and up to 75% ee.

Supporting Information

 
  • References and Notes

    • 1a Fehr C, Stempf I, Galindo J. Angew. Chem. Int. Ed. Engl. 1993; 32: 1044
    • 1b Fehr C, Galindo J. Angew. Chem. Int. Ed. Engl. 1994; 33: 1888
    • 1c Yanagisawa A, Kikuchi T, Watanabe T, Kuribayashi T, Yamamoto H. Synlett 1995; 372
    • 1d Vedejs E, Kruger AW. J. Org. Chem. 1998; 63: 2792
    • 1e Yamashita Y, Emura Y, Odashima K, Koga K. Tetrahedron Lett. 2000; 41: 209
    • 1f Mitsuhashi K, Ito R, Arai T, Yanagisawa A. Org. Lett. 2006; 8: 1721
    • 2a Ishihara K, Kaneeda M, Yamamoto H. J. Am. Chem. Soc. 1994; 116: 11179
    • 2b Ishihara K, Nakamura S, Kaneeda M, Yamamoto H. J. Am. Chem. Soc. 1996; 118: 12854
    • 2c Nakashima D, Yamamoto H. Synlett 2006; 150
    • 2d Cheon CH, Imahori T, Yamamoto H. Chem. Commun. 2010; 46: 6980
    • 2e Cheon CH, Yamamoto H, Toste FD. J. Am. Chem. Soc. 2011; 133: 13248
    • 4a Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 4b Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2017; 117: 10608
  • 5 Gheewala CD, Collins BE, Lambert TH. Science 2016; 351: 961
  • 6 Gheewala CD, Hirschi JS, Lee W.-H, Paley DW, Vetticatt MJ, Lambert TH. J. Am. Chem. Soc. 2018; 140: 3523
  • 7 Yuan C, Li J, Li P. ACS Omega 2018; 3: 6820
    • 8a Qiao X, El-Shahat M, Ullah B, Bao Z, Xing H, Xiao L, Ren Q, Zhang Z. Tetrahedron Lett. 2017; 58: 2050
    • 8b Sui Y, Cui P, Liu S, Zhou Y, Du P, Zhou H. Eur. J. Org. Chem. 2018; 215
    • 8c Zhao X, Xiao J, Tang W. Synthesis 2017; 49: 3157
  • 9 (2R)-2-Phenylcyclohexanone (3a); Typical Procedure PCCP catalyst 1b (19.3 mg, 0.02 mmol, 10 mol%) was weighed into a cryogenic vial. The vial was cooled to –10 °C, and H2O (4 μL 1.1 equiv) and anhyd xylenes (2 mL) were added. After 15 min at –10 °C, silyl enol ether 2a (49 mg, 0.2 mmol, 1.0 equiv) was added dropwise to the stirred mixture. After 8 h, the reaction was quenched by the addition of sat. aq NaHCO3 (3 mL) and the mixture was extracted with CH2Cl2 (25 mL). The organic layer was washed with brine (5 mL), dried (NaSO4), filtered, and concentrated in vacuo. The residue was purified by flash column chromatography [silica gel, hexanes–EtOAc (100:1 to 10:1)] to give a white solid; yield: 35 mg (99%, 74% ee); [α]D 25 +50.7 (c = 0.4, CHCl3). HPLC: Chiralpak Lux 5u cellulose-1 [hexanes–i-ProH (99:1), flow rate = 1.0 mL/min; λ = 215 nm], t R (minor, S) = 14.8 min; t R (major, R) = 16.2 min. 1H NMR (400 MHz, CDCl3): δ = 7.33 (t, J = 7.4 Hz, 2 H), 7.25 (t, J = 7.4 Hz, 1 H), 7.14 (d, J = 7.4 Hz, 2 H), 3.60 (dd, J = 12.1, 5.4 Hz, 1 H), 2.63–2.36 (m, 2 H), 2.26–2.30 (m, 1 H), 2.21–2.09 (m, 1 H), 2.09–1.90 (m, 2 H), 1.90–1.71 (m, 2 H).