Synlett 2019; 30(08): 972-976
DOI: 10.1055/s-0037-1611802
letter
© Georg Thieme Verlag Stuttgart · New York

Decarbonylation through Aldehydic C–H Bond Cleavage by a Cationic Iridium Catalyst

a   Department of Social Design Engineering, National Institute of Technology, Kochi College, 200-1 Monobe, Nankoku, Kochi 783-8508, Japan   Email: shirai@kochi-ct.ac.jp
,
Kazuki Sugimoto
b   Department of Materials Science and Engineering, National Institute of Technology, Kochi College, 200-1 Monobe, Nankoku, Kochi 783-8508, Japan
,
Masaya Iwasaki
b   Department of Materials Science and Engineering, National Institute of Technology, Kochi College, 200-1 Monobe, Nankoku, Kochi 783-8508, Japan
,
Ryuki Sumida
b   Department of Materials Science and Engineering, National Institute of Technology, Kochi College, 200-1 Monobe, Nankoku, Kochi 783-8508, Japan
,
Harunori Fujita
a   Department of Social Design Engineering, National Institute of Technology, Kochi College, 200-1 Monobe, Nankoku, Kochi 783-8508, Japan   Email: shirai@kochi-ct.ac.jp
,
Yasunori Yamamoto
c   Division of Chemical Process Engineering and Frontier Chemistry Center (FCC), Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8 Kitaku, Sapporo, Hokkaido 060-8628, Japan
› Author Affiliations
Support has been provided in part by the TAKE SYSTEMS CO., LTD.
Further Information

Publication History

Received: 28 February 2019

Accepted after revision: 01 April 2019

Publication Date:
12 April 2019 (online)


Abstract

We report the decarbonylation of aldehydes through an aldehydic C–H bond cleavage catalyzed by a cationic iridium/bisphosphine catalyst. The reaction proceeds under relatively mild conditions to give the corresponding hydrocarbon products in moderate to high yields. In addition, this cationic iridium catalyst system can be applied to an asymmetric hydroacylation of ketones.

Supporting Information

 
  • References and Notes

  • 1 For carbonylation and decarbonylation reactions, see: Fukuyama T, Maetani S, Ryu I. In Comprehensive Organic Synthesis II Vol. 3, Chap. 3.22. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 1073

    • For metal-catalyzed decarbonylative C–C bond-formation reactions of aldehydes, see:
    • 2a Varela JA, González-Rodríguez C, Rubin SG, Castedo L, Saá C. J. Am. Chem. Soc. 2006; 128: 9576
    • 2b Guo X, Wang J, Li C.-J. J. Am. Chem. Soc. 2009; 131: 15092
    • 2c Guo X, Wang J, Li C.-J. Org. Lett. 2010; 12: 3176
    • 2d Shuai Q, Yang L, Guo X, Baslé O, Li C.-J. J. Am. Chem. Soc. 2010; 132: 12212
    • 2e Yang L, Correia CA, Guo X, Li C.-J. Tetrahedron Lett. 2010; 51: 5486
    • 2f Yang L, Zeng T, Shuai Q, Guo X, Li C.-J. Chem. Commun. 2011; 47: 2161
    • 2g Kang L, Zhang F, Ding L.-T, Yang L. RSC Adv. 2015; 5: 100452
    • 2h Tomberg A, Kundu S, Zhou F, Li C.-J, Moitessier N. ACS Omega 2018; 3: 3218

      For recent examples of decarbonylative radical C–C bond-formation reactions of aldehydes, see:
    • 3a Paul S, Guin J. Chem. Eur. J. 2015; 21: 17618
    • 3b Tang RJ, He Q, Yang L. Chem. Commun. 2015; 51: 5925
    • 3c Tang R.-J, Kang L, Yang L. Adv. Synth. Catal. 2015; 357: 2055
    • 3d Zong Z, Wang W, Bai X, Xi H, Li Z. Asian J. Org. Chem. 2015; 4: 622
    • 3e Yang L, Lu W, Zhou W, Zhang F. Green Chem. 2016; 18: 2941
    • 3f Ouyang X.-H, Song R.-J, Liu B, Li J.-H. Adv. Synth. Catal. 2016; 358: 1903
    • 3g Lv L, Bai X, Yan X, Li Z. Org. Chem. Front. 2016; 3: 1509
    • 3h Biswas P, Paul S, Guin J. Angew. Chem. Int. Ed. 2016; 55: 7756
    • 3i Pan C, Chen Y, Song S, Li L, Yu J.-T. J. Org. Chem. 2016; 81: 12065
    • 3j Pan C, Chen C, Yu J.-T. Org. Biomol. Chem. 2017; 15: 1096
    • 3k Li Y.-X, Wang Q.-Q, Yang L. Org. Biomol. Chem. 2017; 15: 1338
    • 3l Li W.-Y, Wang Q.-Q, Yang L. Org. Biomol. Chem. 2017; 15: 9987
    • 3m Liu X, Qian P, Wang Y, Pan Y. Org. Chem. Front. 2017; 4: 2370
    • 3n Li Y.-X, Li W.-Y, Jiang Y.-Y, Yang L. Tetrahedron Lett. 2018; 59: 2934
    • 3o Biswas P, Guin J. J. Org. Chem. 2018; 83: 5629
    • 3p Li Y, Li J.-H. Org. Lett. 2018; 20: 5323
    • 3q Zou H.-X, Li Y, Yang X.-H, Xiang J, Li J.-H. J. Org. Chem. 2018; 83: 8581
    • 3r Luo Z, Han X, Fang Y, Liu P, Feng C, Li Z, Xu X. Org. Chem. Front. 2018; 5: 3299
    • 3s Tang S, Liu Y, Gao X, Wang P, Huang P, Lei A. J. Am. Chem. Soc. 2018; 140: 6006
    • 3t Wu C.-S, Li R, Wang Q.-Q, Yang L. Green Chem. 2019; 21: 269

      For selected reviews of decarbonylative transformation of other carbonyl compounds, see:
    • 4a Gooßen LJ, Rodríguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
    • 4b Dermenci A, Dong G. Sci. China: Chem. 2013; 56: 685
    • 4c Takise R, Muto K, Yamaguchi J. Chem. Soc. Rev. 2017; 46: 5864
    • 4d Guo L, Rueping M. Chem. Eur. J. 2018; 24: 7794
    • 4e Liu C, Szostak M. Org. Biomol. Chem. 2018; 16: 7998
    • 6a Tsuji J, Ohno K. Tetrahedron Lett. 1965; 6: 3969
    • 6b Ohno K, Tsuji J. J. Am. Chem. Soc. 1968; 90: 99

      For Rh catalysis, see:
    • 7a Doughty DH, Pignolet LH. J. Am. Chem. Soc. 1978; 100: 7083
    • 7b Abu-Hasanayn F, Goldman ME, Goldman AS. J. Am. Chem. Soc. 1992; 114: 2520
    • 7c Beck CM, Rathmill SE, Park YJ, Chen J, Crabtree RH, Liable-Sands LM, Rheingold AL. Organometallics 1999; 18: 5311
    • 7d Kreis M, Palmelund A, Bunch L, Madsen R. Adv. Synth. Catal. 2006; 348: 2148
    • 7e Fessard TC, Andrews SP, Motoyoshi H, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 9331
    • 7f Fristrup P, Kreis M, Palmelund A, Norrby P.-O, Madsen R. J. Am. Chem. Soc. 2008; 130: 5206
    • 7g Taaring E, Madsen R. Chem. Eur. J. 2008; 14: 5638

      For Pd catalysis, see:
    • 8a Hawthorne JO, Wilt MH. J. Org. Chem. 1960; 25: 2215
    • 8b Wilt JW, Pawlikowski WW. Jr. J. Org. Chem. 1975; 40: 3641
    • 8c Matsubara S, Yokota Y, Oshima K. Org. Lett. 2004; 6: 2071
    • 8d Ferri D, Mondelli C, Krumeich F, Baiker A. J. Phys. Chem. B 2006; 110: 22982
    • 8e Chatterjee M, Ishizaka T, Kawanami H. Green Chem. 2018; 20: 2345

      For Ru catalysis, see:
    • 9a Domazetis G, Tarpey B, Dorphin D, James BR. J. Chem. Soc., Chem. Commun. 1980; 939
    • 9b Park KH, Son SU, Chung YK. Chem. Commun. 2003; 1898
    • 9c Mazziotta A, Madsen R. Eur. J. Org. Chem. 2017; 5417

      For Ir catalysis, see:
    • 10a Shibata T, Toshida N, Yamasaki M, Maekawa S, Takagi K. Tetrahedron 2005; 61: 9974
    • 10b Kwong FY, Lee HW, Lam WH, Qiu L, Chan AS. C. Tetrahedron: Asymmetry 2006; 17: 1238
    • 10c Iwai T, Fujihara T, Tsuji Y. Chem. Commun. 2008; 6215
    • 10d Geilen FM. A, vom Stein T, Engendahl B, Winterle S, Liauw MA, Klankermayer J, Leitner W. Angew. Chem. Int. Ed. 2011; 50: 6831
    • 10e Adams JJ, Arulsamy N, Roddick DM. Organometallics 2012; 31: 1439
    • 10f Olsen EP. K, Singh T, Harris P, Andersson PG, Madsen R. J. Am. Chem. Soc. 2015; 137: 834
  • 11 For Ni catalysis, see: Ding K, Xu S, Alotaibi R, Paudel K, Reinheimer EW, Weatherly J. J. Org. Chem. 2017; 82: 4924
  • 12 Co-mediated decarbonylation: Alawisi H, Al-Afyouni KF, Arman HD, Tonzetich ZJ. Organometallics 2018; 37: 4128

    • For atom-economical asymmetric hydroacylations of ketones, see:
    • 13a Shen Z, Khan HA, Dong VM. J. Am. Chem. Soc. 2008; 130: 2916
    • 13b Phan DH. T, Kim B, Dong VM. J. Am. Chem. Soc. 2009; 131: 15608
    • 13c Shen Z, Dornan PK, Khan HA, Woo TK. Dong V. M. J. Am. Chem. Soc. 2009; 131: 1077
    • 13d Khan HA, Kou KG. M, Dong VM. Chem. Sci. 2011; 2: 407
    • 13e Yang J, Yoshikai N. J. Am. Chem. Soc. 2014; 136: 16748

      For recent examples of enantioselective insertions of ketone C=O groups into Ir–H bonds, see:
    • 14a Yoshida K, Kamimura T, Kuwabara H, Yanagisawa A. Chem. Commun. 2015; 51: 15442
    • 14b Ak B, Aydemir M, Durap F, Meriç N, Elma D, Baysal A. Tetrahedron: Asymmetry 2015; 26: 1307
    • 14c Verkade JM. M, Quaedflieg PJ. L. M, Verzijl GK. M, Lefort L, vanDelft FL, de Vries JG, Rutjes FP. J. T. Chem. Commun. 2015; 51: 14462
    • 14d Liu W.-P, Yuan M.-L, Yang X.-H, Li K, Xie J.-H, Zhou Q.-L. Chem. Commun. 2015; 51: 6123
    • 14e Tian C, Gong L, Meggers E. Chem. Commun. 2016; 52: 4207
    • 14f Liu Q, Wang C, Zhou H, Wang B, Lv J, Cao L, Fu Y. Org. Lett. 2018; 20: 971
    • 14g Zhang Y.-M, Yuan M.-L, Liu W.-P, Xie J.-H, Zhou Q.-L. Org. Lett. 2018; 20: 4486
  • 15 (Benzyloxy)benzene (2b); Typical ProcedureAn oven-dried sealed tube was charged with [Ir(cod)2](BArF 4) (0.0125 mmol, 5 mol%), (R)-Xyl-BINAP (0.0138 mmol, 5.5 mol%), and anhyd THF (1.0 mL) under N2, and the mixture was stirred at r.t. for 30 min. 2-(Phenoxymethyl)benzaldehyde (1b; 0.25 mmol) was added and the resultant mixture was heated at 135 °C for 24 h with stirring. The mixture was then purified by column chromatography (silica gel, hexane) to give a colorless liquid; yield: 16.1 mg (35%).1H NMR (400 MHz, CDCl3): δ = 7.27–7.45 (m, 7 H), 6.96–7.00 (m, 3 H), 5.07 (s, 3 H).3-Methyl-2-benzofuran-1(3H)-one (3)An oven-dried two-necked flask with a condenser was charged with [Ir(cod)2](BArF 4) (0.0125 mmol, 5 mol%), (R)-Xyl-BINAP (0.0138 mmol, 5.5 mol%), and anhyd THF (1.0 mL) under N2, and the mixture was stirred at r.t. for 30 min. Benzaldehyde 1j (0.25 mmol) was added and the mixture was at 90 °C for 48 h with stirring. The formation of lactone (3) was confirmed by 1H NMR spectroscopy, and the conversion (57%) was determined through 1H NMR integration by comparison with the substrate peak.1H NMR (400 MHz, CDCl3): δ = 7.91 (d, J = 7.6 Hz, 1 H), 7.68 (td, J = 7.6, 1.2 Hz, 1 H), 7.53 (t, J = 7.6 Hz, 1 H), 7.44 (dd, J = 8.0, 1.2 Hz, 1 H), 5.57 (q, J = 6.8 Hz, 1 H), 1.65 (d, J = 6.4 Hz, 3 H).
  • 16 Kosaka M, Sekiguchi S, Naito J, Uemura M, Kuwahara S, Watanabe M, Harada N, Hiroi K. Chirality 2005; 17: 218