Synthesis 2019; 51(10): 2058-2080
DOI: 10.1055/s-0037-1611751
review
© Georg Thieme Verlag Stuttgart · New York

Electronic Effects on Chiral NHC–Transition-Metal Catalysis

Xuefeng Yong ‡
b   School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. of China
a   Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. of China   Email: jasonhcy@sustech.edu.cn
,
Ryan Thurston ‡
c   Department of Chemistry & Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
a   Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. of China   Email: jasonhcy@sustech.edu.cn
,
Chun-Yu Ho*
a   Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. of China   Email: jasonhcy@sustech.edu.cn
› Author Affiliations
We thank Shenzhen Nobel Prize Scientists Laboratory Project (C17213101), NSFC (21602099), SZ basic research fund (JCYJ 20170817105041557) and Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG) (ZDSYS201602261933302).
Further Information

Publication History

Received: 20 December 2018

Accepted after revision: 30 January 2019

Publication Date:
10 April 2019 (online)


These authors contributed equally to this work.

Abstract

Though the properties of N-heterocyclic carbenes (NHCs) are generally dominated by the very strong σ donating character, electronic activation has emerged as an effective method to cooperate with typical carbon-framework steric optimization for highly enantioselective chiral NHC–transition-metal catalysis in recent years. NHC electronic changes associated with structural variations are now better understood by quantitative analysis using various methods. Here we highlighted and correlated some interesting chiral induction improvement methods, which were brought by electronic and steric cooperation on chiral NHC–transition-metal catalysis.

1 Introduction

2 Hemilabile Sidechains on NHC Ligands

3 Electronic and Bond Angle Changes Brought by NHC Core Size Variations

4 Electronic Activators on the NHC Core

5 Conjugated Systems and Fused Ring Structures

6 Remote Electronic Activators on the N-Aryl Ring

7 Summary and Outlook

 
  • References

    • 1a Breslow R. Chem. Ind. 1957; (26) 893
    • 1b Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
  • 2 Wanzlick HW, Schikora E. Angew. Chem. 1960; 72: 494
  • 3 Arduengo AJ. III, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 361
    • 4a Enders D, Gielen H, Raabe G, Runsink J, Teles JH. Chem. Ber. 1996; 129: 1483
    • 4b Herrmann WA, Elison M, Fischer J, Kocher C, Artus GR. J. Angew. Chem., Int. Ed. Engl. 1995; 34: 2371
    • 4c Herrmann WA, Goossen LJ, Kocher C, Artus GR. J. Angew. Chem., Int. Ed. Engl. 1996; 35: 2805
    • 5a Marion N, Nolan SP. Chem. Soc. Rev. 2008; 37: 1776
    • 5b Hahn FE, Jahnke MC. Angew. Chem. Int. Ed. 2008; 47: 3122
    • 5c Lin JC. Y, Huang RT. W, Lee CS, Bhattacharyya A, Hwang WS, Lin IJ. B. Chem. Rev. 2009; 109: 3561
    • 5d Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
    • 5e Diez-Gonzalez S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
    • 5f Schuster O, Yang LR, Raubenheimer HG, Albrecht M. Chem. Rev. 2009; 109: 3445
  • 6 Jacobsen H, Correa A, Poater A, Costabile C, Cavallo L. Coord. Chem. Rev. 2009; 253: 687
    • 7a Hopkinson MN, Richter C, Schedler M, Glorius F. Nature (London) 2014; 510: 485
    • 7b Cesar V, Bellemin-Laponnaz S, Gade LH. Chem. Soc. Rev. 2004; 33: 619
    • 7c Janssen-Muller D, Schlepphorst C, Glorius F. Chem. Soc. Rev. 2017; 46: 4845
  • 8 Strauss SH. Chem. Rev. 1993; 93: 927
    • 9a Huynh HV. Chem. Rev. 2018; 118: 9457
    • 9b Jacobsen H, Correa A, Costabile C, Cavallo L. J. Organomet. Chem. 2006; 691: 4350
  • 10 Jeffrey JC, Rauchfuss TB. Inorg. Chem. 1979; 18: 2658
  • 11 Osborn JA, Jardine FH, Young JF, Wilkinson G. J. Chem. Soc. A 1966; 1711
  • 12 Empsall HD, Hyde EM, Jones CE, Shaw BL. J. Chem. Soc., Dalton Trans. 1974; 1980
  • 13 Jones CE, Shaw BL, Turtle BL. J. Chem. Soc., Dalton Trans. 1974; 992
  • 14 Miller EM, Shaw BL. J. Chem. Soc., Dalton Trans. 1974; 480
  • 15 For a review see: Knowles WS, Sabacky MJ, Vineyard BD. Homogeneous Catalysis II . In Advances in Chemistry Series, Vol. 132. Forster D, Roth JF. American Chemical Society; Washington DC: 1974: 274
  • 16 Lindner E, Schober U, Glaser E, Norz H, Wegner P. Z. Naturforsch., B 1987; 42: 1527
    • 17a Lindner E, Andres B. Chem. Ber. 1988; 121: 829
    • 17b Lindner E, Norz H. Z. Naturforsch., B 1989; 44: 1493
    • 17c Lindner E, Norz H. Chem. Ber. 1990; 123: 459
    • 18a Lindner E, Karle B. Z. Naturforsch., B 1990; 45: 1108
    • 18b Lindner E, Karle B. Chem. Ber. 1990; 123: 1469
    • 18c Lindner E, Schober U, Fawzi R, Hiller W, Englert U, Wegner P. Chem. Ber. 1987; 120: 1621
    • 18d McCann GM, Carvill A, Lindner E, Karle B, Mayer HA. J. Chem. Soc., Dalton Trans. 1990; 3107
  • 19 Slone CS, Weinberger DA, Mirkin CA. Prog. Inorg. Chem. 1999; 48: 233
    • 20a Nandi M, Jin J, RajanBabu TV. J. Am. Chem. Soc. 1999; 121: 9899
    • 20b Nomura N, Jin J, Park H, RajanBabu TV. J. Am. Chem. Soc. 1998; 120: 459
  • 21 Zhang AB, Rajanbabu TV. Org. Lett. 2004; 6: 1515
  • 23 Lee YM, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3160
  • 24 Gao F, McGrath KP, Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 14315
  • 25 Guzman-Martinez A, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10634
  • 26 Harada A, Makida Y, Sato T, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2014; 136: 13932
  • 28 Soeta T, Ishizaka T, Tabatake Y, Ukaji Y. Chem. Eur. J. 2014; 20: 16773
  • 29 Soeta T, Ishizaka T, Ukaji Y. J. Org. Chem. 2016; 81: 2817
  • 30 Soeta T, Hatanaka Y, Ishizaka T, Ukaji Y. Tetrahedron 2018; 74: 4601
  • 31 Arnold PL, Scarisbrick AC, Blake AJ, Wilson C. Chem. Commun. 2001; 2340
  • 32 Drissi-Amraoui S, Morin MS. T, Crevisy C, Basle O, de Figueiredo RM, Mauduit M, Campagne JM. Angew. Chem. Int. Ed. 2015; 54: 11830
  • 33 Jahier-Diallo C, Morin MS. T, Queval P, Rouen M, Artur I, Querard P, Toupet L, Crévisy C, Baslé O, Mauduit M. Chem. Eur. J. 2015; 21: 993
  • 34 Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP. J. Am. Chem. Soc. 1983; 105: 3206
  • 35 Plenio H. Chem. Rev. 1997; 97: 3363
  • 36 Paul S, Schweizer WB, Rugg G, Senn HM, Gilmour R. Tetrahedron 2013; 69: 5647
  • 37 Craig NC, Chen A, Suh KH, Klee S, Mellau GC, Winnewisser BP, Winnewisser M. J. Am. Chem. Soc. 1997; 119: 4789
  • 38 Wan KY, Lough AJ, Morris RH. Organometallics 2016; 35: 1604
  • 39 Wan KY, Roelfes F, Lough AJ, Hahn FE, Morris RH. Organometallics 2018; 37: 491
  • 40 Wan KY, Sung MM. H, Lough AJ, Morris RH. ACS Catal. 2017; 7: 6827
  • 41 Perry MC, Cui XH, Powell MT, Hou DR, Reibenspies JH, Burgess K. J. Am. Chem. Soc. 2003; 125: 113
  • 42 Nanchen S, Pfaltz A. Chem. Eur. J. 2006; 12: 4550
  • 43 Yoshida K, Kamimura T, Kuwabara H, Yanagisawa A. Chem. Commun. 2015; 51: 15442
    • 44a Tolman CA. J. Am. Chem. Soc. 1970; 92: 2953
    • 44b Gusev DG. Organometallics 2009; 28: 6458
  • 45 Lever AB. P. Inorg. Chem. 1990; 29: 1271
    • 46a Huynh HV, Han Y, Jothibasu R, Yang JA. Organometallics 2009; 28: 5395
    • 46b Teng QQ, Huynh HV. Dalton Trans. 2017; 46: 614
  • 47 Li J, Shen WX, Li XR. Curr. Org. Chem. 2012; 16: 2879
  • 48 Matsumura N, Kawano J, Fukunishi N, Inoue H, Yasui M, Iwasaki F. J. Am. Chem. Soc. 1995; 117: 3623
  • 49 Alder RW, Blake ME, Bortolotti C, Bufali S, Butts CP, Linehan E, Oliva JM, Orpen AG, Quayle MJ. Chem. Commun. 1999; 241
  • 50 Yang LR, Wei D, Mai WP, Mao P. Chin. J. Org. Chem. 2013; 33: 943
  • 51 Despagnet-Ayoub E, Grubbs RH. J. Am. Chem. Soc. 2004; 126: 10198
  • 52 Scarborough CC, Popp BV, Guzei IA, Stahl SS. J. Organomet. Chem. 2005; 690: 6143
  • 53 Lu WY, Cavell KJ, Wixey JS, Kariuki B. Organometallics 2011; 30: 5649
  • 54 Higgins EM, Sherwood JA, Lindsay AG, Armstrong J, Massey RS, Alder RW, O’Donoghue AC. Chem. Commun. 2011; 47: 1559
  • 55 Dorta R, Stevens ED, Scott NM, Costabile C, Cavallo L, Hoff CD, Nolan SP. J. Am. Chem. Soc. 2005; 127: 2485
  • 56 Weinstein CM, Junor GP, Tolentino DR, Jazzar R, Melaimi M, Bertrand G. J. Am. Chem. Soc. 2018; 140: 9255
  • 57 Binobaid A, Iglesias M, Beetstra DJ, Kariuki B, Dervisi A, Fallis IA, Cavell KJ. Dalton Trans. 2009; 7099
  • 58 Magill AM, Cavell KJ, Yates BF. J. Am. Chem. Soc. 2004; 126: 8717
  • 59 Iglesias M, Beetstra DJ, Knight JC, Ooi LL, Stasch A, Coles S, Male L, Hursthouse MB, Cavell KJ, Dervisi A, Fallis IA. Organometallics 2008; 27: 3279
  • 60 Dunsford JJ, Cavell KJ. Dalton Trans. 2011; 40: 9131 ; and references cited therein
  • 61 Park JK, Lackey HH, Rexford MD, Kovnir K, Shatruk M, McQuade DT. Org. Lett. 2010; 12: 5008
  • 62 Rae J, Hu YC, Procter DJ. Chem. Eur. J. 2014; 20: 13143
  • 63 Arduengo AJ. III, Davidson F, Dias HV. R, Goerlich JR, Khasnis D, Marshall WJ, Prakasha TK. J. Am. Chem. Soc. 1997; 119: 12742
  • 64 Cole ML, Davies AJ, Jones C. J. Chem. Soc., Dalton Trans. 2001; 2451
  • 65 Zhang Y, César V, Storch G, Lugan N, Lavigne G. Angew. Chem. Int. Ed. 2014; 53: 6482
  • 66 Solovyev A, Lacote E, Curran DP. Org. Lett. 2011; 13: 6042
  • 67 Hirano K, Urban S, Wang C, Glorius F. Org. Lett. 2009; 11: 1019
  • 68 Benhamou L, Cesar V, Gornitzka H, Lugan N, Lavigne G. Chem. Commun. 2009; 4720
  • 69 Banach L, Gunka PA, Gorska D, Podlewska M, Zachara J, Buchowicz W. Eur. J. Inorg. Chem. 2015; 2015: 5677
  • 70 Kolychev EL, Kronig S, Brandhorst K, Freytag M, Jones PG, Tamm M. J. Am. Chem. Soc. 2013; 135: 12448
  • 71 Koto Y, Shibahara F, Murai T. Org. Biomol. Chem. 2017; 15: 1810
  • 72 Liske A, Verlinden K, Buhl H, Schaper K, Ganter C. Organometallics 2013; 32: 5269
  • 73 Dunn MH, Konstandaras N, Cole ML, Harper JB. J. Org. Chem. 2017; 82: 7324
  • 74 Zhang Y, Lavigne G, Lugan N, César V. Chem. Eur. J. 2017; 23: 13792
  • 75 César V, Zhang Y, Kosnik W, Zielinski A, Rajkiewicz AA, Ruamps M, Bastin S, Lugan N, Lavigne G, Grela K. Chem. Eur. J. 2017; 23: 1950
  • 76 Ohgi A, Nakao Y. Chem. Lett. 2016; 45: 45
  • 77 Zhang Y, Lavigne G, Cesar V. J. Org. Chem. 2015; 80: 7666
  • 78 Seo H, Kim BY, Lee JH, Park HJ, Son SU, Chung YK. Organometallics 2003; 22: 4783
  • 79 Winn CL, Guillen F, Pytkowicz J, Roland S, Mangeney P, Alexakis A. J. Organomet. Chem. 2005; 690: 5672
    • 80a Debono N, Labande A, Manoury E, Daran J.-C, Poli R. Organometallics 2010; 29: 1879
    • 80b Loxq P, Debono N, Gulcemal S, Daran J.-C, Manoury E, Poli R, Çetinkaya B, Labande A. New J. Chem. 2014; 38: 338
  • 81 Albright A, Gawley RE. J. Am. Chem. Soc. 2011; 133: 19680
  • 82 Albright A, Eddings D, Black R, Welch CJ, Gerasimchuk NN, Gawley RE. J. Org. Chem. 2011; 76: 7341
  • 83 Diesel J, Finogenova AM, Cramer N. J. Am. Chem. Soc. 2018; 140: 4489 ; and supporting information
  • 84 Cai Y, Yang X.-T, Zhang S.-Q, Li F, Li Y.-Q, Ruan L.-X, Hong X, Shi S.-L. Angew. Chem. Int. Ed. 2018; 57: 1376
  • 85 Glorius F, Altenhoff G, Goddard R, Lehmann C. Chem. Commun. 2002; 2704
  • 86 Würtz S, Lohre C, Fröhlich R, Bergander K, Glorius F. J. Am. Chem. Soc. 2009; 131: 8344
    • 87a Herrmann WA, Baskakov D, Herdtweck E, Hoffmann SD, Bunlaksananusorn T, Rampf F, Rodefeld L. Organometallics 2006; 25: 2449
    • 87b Baskakov D, Herrmann WA, Herdtweck E, Hoffmann SD. Organometallics 2007; 26: 626
  • 88 Cavell KJ, Elliott MC, Nielsen DJ, Paine JS. Dalton Trans. 2006; 4922
  • 89 Weiss R, Reichel S, Handke M, Hampel F. Angew. Chem. Int. Ed. 1998; 37: 344
  • 90 Cole ML, Junk PC. CrystEngComm 2004; 6: 173
    • 91a Alcarazo M, Roseblade SJ, Cowley AR, Fernández R, Brown JM, Lassaletta JM. J. Am. Chem. Soc. 2005; 127: 3290
    • 91b Burstein C, Lehmann CW, Glorius F. Tetrahedron 2005; 61: 6207
  • 92 Espina M, Rivilla I, Conde A, Díaz-Requejo MM, Pérez PJ, Álvarez E, Fernández R, Lassaletta JM. Organometallics 2015; 34: 1328
  • 93 Grande-Carmona F, Iglesias-Sigüenza J, Álvarez E, Díez E, Fernández R, Lassaletta JM. Organometallics 2015; 34: 5073
  • 94 Check CT, Jang KP, Schwamb CB, Wong AS, Wang MH, Scheidt KA. Angew. Chem. Int. Ed. 2015; 54: 4264
  • 95 Chaulagain MR, Sormunen GJ, Montgomery J. J. Am. Chem. Soc. 2007; 129: 9568
  • 96 Liu LT, Ishida N, Ashida S, Murakami M. Org. Lett. 2011; 13: 1666
  • 97 Liu Z, Shi M. Tetrahedron: Asymmetry 2009; 20: 119
  • 98 Liu Z, Zhang T, Shi M. Organometallics 2008; 27: 2668
  • 99 Tang J, He Y, Yu J, Zhang D. Organometallics 2017; 36: 1372
  • 100 Ogle JW, Miller SA. Chem. Commun. 2009; 5728 ; and references therein
  • 101 Credendino R, Falivene L, Cavallo L. J. Am. Chem. Soc. 2012; 134: 8127
  • 102 Süßner M, Plenio H. Chem. Commun. 2005; 5417
    • 103a Leuthausser S, Schwarz D, Plenio H. Chem.–Eur. J. 2007; 13: 7195
    • 103b Sato T, Hirose Y, Yoshioka D, Oi S. Organometallics 2012; 31: 6995
    • 103c Collado A, Balogh J, Meiries S, Slawin AM. Z, Falivene L, Cavallo L, Nolan SP. Organometallics 2013; 32: 3249
    • 103d Le Duc G, Meiries S, Nolan SP. Organometallics 2013; 32: 7547
  • 104 Leuthäußer S, Schmidts V, Thiele CM, Plenio H. Chem. Eur. J. 2008; 14: 5465
  • 105 Meiries S, Speck K, Cordes DB, Slawin AM. Z, Nolan SP. Organometallics 2013; 32: 330
  • 106 Fürstner A, Ackermann L, Gabor B, Goddard R, Lehmann CW, Mynott R, Stelzer F, Thiel OR. Chem.–Eur. J. 2001; 7: 3236
  • 107 Pandey S, Kane MA, Baker GA, Bright FV, Fürstner A, Seidel G, Leitner W. J. Phy. Chem. B 2002; 106: 1820
  • 108 Hadei N, Kantchev EA. B, O’Brien CJ, Organ MG. Org. Lett. 2005; 7: 1991
    • 109a Ho CY, He LS. Angew. Chem. Int. Ed. 2010; 49: 9182
    • 109b Ho CY, Chan CW, He LS. Angew. Chem. Int. Ed. 2015; 54: 4512
  • 110 Winkler A, Brandhorst K, Freytag M, Jones PG, Tamm M. Organometallics 2016; 35: 1160