Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(23): 4577-4590
DOI: 10.1055/s-0037-1610250
DOI: 10.1055/s-0037-1610250
feature
Chiral Pyrophosphoric Acid Catalysts for the para-Selective and Enantioselective Aza-Friedel–Crafts Reaction of Phenols
Authors
This work was financially supported by JSPS KAKENHI Grant Numbers JP26288046, JP17H03054, and JP15H05810 in Precisely Designed Catalysts with Customized Scaffolding.
Further Information
Publication History
Received: 27 June 2018
Accepted after revision: 24 July 2018
Publication Date:
22 August 2018 (online)

Abstract
Chiral BINOL-derived pyrophosphoric acid catalysts were developed and used for the regio- and enantioselective aza-Friedel–Crafts reaction of phenols with aldimines. ortho/para-Directing phenols could react at the para-position selectively with moderate to good enantioselectivities. Moreover, the gram-scale transformation of a product into the key intermediate for the antifungal agent (R)-bifonazole was demonstrated.
Key words
Brønsted acid - phosphoric acid - pyrophosphoric acid - organocatalyst - aza-Friedel–Crafts reaction - phenol - regio-selectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610250.
- Supporting Information (PDF)
-
References
- 1a Timperley CM. Best Synthetic Methods: Organophosphorus(V) Chemistry. Academic Press; Cambridge: 2014
- 1b Phosphorus Chemistry I: Asymmetric Synthesis and Bioactive Compounds (Topics in Current Chemistry). Montchamp J.-L. Springer; New York: 2015
- 1c Phosphorus Chemistry II, Synthetic Methods (Topics in Current Chemistry). Montchamp J.-L. Springer; New York: 2015
- 2a Corbridge DE. C. Phospahates. In Studies in Inorganic Chemistry. Vol. 20, Chap. 3. Elsevier Science B.V; Amsterdam: 1995: 169-305
- 2b Handbook of Chemistry and Physics. Haynes WM. CRC Press; Boca Raton: 2015. 96th ed. 5-91-5-92
- 3a Akiyama T. Itoh J. Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
- 3b Taylor MS. Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
- 3c Akiyama T. Chem. Rev. 2007; 107: 5744
- 3d Terada M. Synthesis 2010; 1929
- 3e Kampen D. Reisinger CM. List B. Top. Curr. Chem. 2010; 291: 395
- 3f Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
- 3g Akiyama T. Mori K. Chem. Rev. 2015; 115: 9277
- 3h Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2017; 117: 10608
- 3i Merad J. Lalli C. Bernadat G. Maury J. Masson G. Chem. Eur. J. 2018; 24: 3925
- 4a Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
- 4b Uraguchi D. Terada M. J. Am. Chem. Soc. 2004; 126: 5356
- 5a Chen X.-H. Zhang W.-Q. Gong L.-Z. J. Am. Chem. Soc. 2008; 130: 5652
- 5b Yu J. He L. Chen X.-H. Song J. Chen W.-J. Gong L.-Z. Org. Lett. 2009; 11: 4946
- 5c Yu J. Chen W.-J. Gong L.-Z. Org. Lett. 2010; 12: 4050
- 5d Guo C. Song J. Gong L.-Z. Org. Lett. 2013; 15: 2676
- 5e He L. Chen X.-H. Wang D.-N. Luo S.-W. Zhang W.-Q. Yu J. Ren L. Gong L.-Z. J. Am. Chem. Soc. 2011; 133: 13504
- 6a Momiyama N. Konno T. Furiya Y. Iwamoto T. Terada M. J. Am. Chem. Soc. 2011; 133: 19294
- 6b Momiyama N. Narumi T. Terada M. Chem. Commun. 2015; 51: 16976
- 6c Momiyama N. Funayama K. Noda H. Yamanaka M. Akasaka N. Ishida S. Iwamoto T. Terada M. ACS Catal. 2016; 6: 949
- 7a Ishihara K. Sakakura A. Japanese Patent JP2012-160092, 2012
- 7b Hatano M. Okamoto H. Kawakami T. Toh K. Nakatsuji H. Sakakura A. Ishihara K. Chem. Sci. 2018; 9: 6361
- 8a Uraguchi D. Sorimachi K. Terada M. J. Am. Chem. Soc. 2004; 126: 11804
- 8b Kondoh A. Ota Y. Komuro T. Egawa F. Kanomata K. Terada M. Chem. Sci. 2016; 7: 1057
- 9a Jørgensen KA. Synthesis 2003; 1117
- 9b Bandini M. Melloni A. Umani-Ronchi A. Angew. Chem. Int. Ed. 2004; 43: 550
- 9c Doyle AG. Jacobsen EN. Chem. Rev. 2007; 107: 5713
- 9d You S.-L. Cai Q. Zeng M. Chem. Soc. Rev. 2009; 38: 2190
- 9e Bandini M. Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 9f Terrasson V. de Figueiredo RM. Campagne JM. Eur. J. Org. Chem. 2010; 2635
- 9g Zeng M. You S.-L. Synlett 2010; 1289
- 10a Zhao J.-L. Liu L. Gu C.-L. Wang D. Chen Y.-J. Tetrahedron Lett. 2008; 49: 1476
- 10b Lv J. Li X. Zhong L. Luo S. Cheng J.-P. Org. Lett. 2010; 12: 1096
- 10c Hajra S. Sinha D. J. Org. Chem. 2011; 76: 7334
- 10d Yoshida M. Nemoto T. Zhao Z. Ishige Y. Hamada Y. Tetrahedron: Asymmetry 2012; 23: 859
- 10e Suzuki Y. Nemoto T. Kakugawa K. Hamajima A. Hamada Y. Org. Lett. 2012; 14: 2350
- 10f Li G.-X. Qu J. Chem. Commun. 2012; 48: 5518
- 10g Xu Q.-L. Dai L.-X. You S.-L. Org. Lett. 2012; 14: 2579
- 10h Bai S. Liu X. Wang Z. Cao W. Lin L. Feng X. Adv. Synth. Catal. 2012; 354: 2096
- 10i Kaur J. Kumar A. Chimni SS. RSC Adv. 2014; 4: 62367
- 10j Zhao Z.-L. Xu Q.-L. Gu Q. Wu X.-Y. You S.-L. Org. Biomol. Chem. 2015; 13: 3086
- 10k Ren H. Wang P. Wang L. Tang Y. Org. Lett. 2015; 17: 4886
- 10l Zhou D. Huang Z. Yu X. Wang Y. Li J. Wang W. Xie H. Org. Lett. 2015; 17: 5554
- 10m Vetica F. Marcia de Figueiredo R. Cupioli E. Gambacorta A. Loreto MA. Miceli M. Gasperi T. Tetrahedron Lett. 2016; 57: 750
- 10n Wang Y. Jiang L. Li L. Dai J. Xiong D. Shao Z. Angew. Chem. Int. Ed. 2016; 55: 15142
- 10o Shikora JM. Chemler SR. Org. Lett. 2018; 20: 2133
- 11a Zhao J.-L. Liu L. Gu C.-L. Wang D. Chen Y.-J. Tetrahedron Lett. 2008; 49: 1476
- 11b Shao L. Hu X.-P. Org. Biomol. Chem. 2017; 15: 9837
- 12a Ralston AW. Ingle A. McCorkle MR. Bauer ST. J. Org. Chem. 1940; 5: 645
- 12b Ralston AW. Ingle A. McCorkle MR. J. Org. Chem. 1942; 7: 457
- 12c Gore PH. Smith GH. Thorburn S. J. Chem. Soc. C. 1971; 650
- 13a Betti M. Gazz. Chim. Ital. 1900; 30II: 301
- 13b Betti M. Gazz. Chim. Ital. 1900; 30II: 310
- 13c Betti M. Gazz. Chim. Ital. 1903; 33II: 1
- 13d Cardellicchio C. Capozzi MA. M. Naso F. Tetrahedron: Asymmetry 2010; 21: 507
- 14 Very recently, Shao reported a catalytic enantioselective aza-FC reaction of phenols with aldimines with the use of chiral phosphoric acid catalysts. ortho-Adducts were selectively obtained with high enantioselectivities. See ref. 10n.
- 15 To determine whether or not overreaction/decomposition of 6a and 7a would occur with the use of strong acids, we used either isolated product 6a or 7a alone in the presence of p-TsOH. As a result, overreaction/decomposition was observed in both cases, and the same unknown compounds as were observed under the standard reaction conditions (Table 1, entry 8) were obtained.
- 16 Hoffmann S. Seayad AM. List B. Angew. Chem. Int. Ed. 2005; 44: 7424
- 17a Nakashima D. Yamamoto H. J. Am. Chem. Soc. 2006; 128: 9626
- 17b Jiao P. Nakashima D. Yamamoto H. Angew. Chem. Int. Ed. 2008; 47: 2411
- 17c Cheon CH. Yamamoto H. J. Am. Chem. Soc. 2008; 130: 9246
- 17d Sai M. Yamamoto H. J. Am. Chem. Soc. 2015; 137: 7091
- 17e Zhou F. Yamamoto H. Angew. Chem. Int. Ed. 2016; 55: 8970
- 18a Hatano M. Maki T. Moriyama K. Arinobe M. Ishihara K. J. Am. Chem. Soc. 2008; 130: 16858
- 18b Hatano M. Hattori Y. Furuya Y. Ishihara K. Org. Lett. 2009; 11: 2321
- 18c Hatano M. Sugiura Y. Ishihara K. Tetrahedron: Asymmetry 2010; 21: 1311
- 18d Hatano M. Sugiura Y. Akakura M. Ishihara K. Synlett 2011; 1247
- 18e Hatano M. Ozaki T. Sugiura Y. Ishihara K. Chem. Commun. 2012; 48: 4986
- 18f Hatano M. Ozaki T. Nishikawa K. Ishihara K. J. Org. Chem. 2013; 78: 10405
- 18g Hatano M. Ishihara K. Asian J. Org. Chem. 2014; 3: 352
- 18h Hatano M. Nishikawa K. Ishihara K. J. Am. Chem. Soc. 2017; 139: 8424
- 18i Hatano M. Mochizuki T. Nishikawa K. Ishihara K. ACS Catal. 2018; 8: 349
- 18j Kurihara T. Satake S. Hatano M. Ishihara K. Yoshino T. Matsunaga S. Chem. Asian J. 2018; 13
- 18k Satake S. Kurihara T. Nishikawa K. Mochizuki T. Hatano M. Ishihara K. Yoshino T. Matsunaga S. Nat. Catal. 2018; 1: 585
- 19 Unfortunately, we have not yet been able to synthesize chiral bis(phosphoric acid)s and thus the corresponding chiral pyrophosphoric acids with more bulky substituents (e.g., 2,4,6-i-Pr3C6H2) due to the steric constraints. With this regard, we have already discussed the synthetic difficulty of the bulky catalysts in our previous manuscript (ref. 7b).
- 20 A higher concentration (i.e., >0.1 M based on 5 in CHCl3) gave much lower enantioselectivities, whereas a lower concentration gave almost the same enantioselectivity as with the optimal concentration (0.01 M). Moreover, the effect of the reaction temperature (–40, –20, 0, and 25 °C) was also investigated. As a result, 0 °C gave better results in terms of yield and enantioselectivity than the other temperatures.
- 21 CHCl3 provided a better yield and enantioselectivity than other low-polarity solvents, such as CH2Cl2, 1,2-dichloroethane, toluene, and benzotrifluoride. In contrast, no reaction occurred when polar solvents were used, such as Et2O, THF, propionitrile, and nitroethane.
- 22 Aldimines with other N-protecting groups, such as CO2t-Bu (Boc), showed lower enantioselectivities (see Scheme 8). Relatively stable N-CO2CH2Ph (Cbz) aldimines could be used, but showed slightly lower yields with almost the same enantioselectivities as less stable NCO2Me aldimines. Moreover, no reaction occurred when NCO2CH2 (9-fluorenyl) (Fmoc), NSO2Ph, NPh, and NBn aldimines were used.
- 23 We performed the 31P NMR (CDCl3) analysis after the routine workup with Et3N. As a result, (R)-3·(Et3N)n was observed as a sole peak at –19.7 ppm, which strongly suggests that (R)-3a was intact during the reaction [cf. 31P NMR (CDCl3) spectra; (R)-3a: δ = –20.8; (R)-2a: δ = –0.4].
- 24 Compounds 6b, 6c, and 6d were subjected to X-ray analysis. See the Supporting Information for details.
- 25 As shown in Table 2 and Scheme 3, the catalytic activity of (R)-1a was lower than that of (R)-3a, and (R)-1a did not promote the reactions of 5b (0.01 M CHCl3) effectively at 0 °C for 3 h. A mixture of the corresponding adducts 6 and 7 was obtained in <5% yield.
- 26a Corelli F. Summa V. Brogi A. Monteagudo E. Botta M. J. Org. Chem. 1995; 60: 2008
- 26b Botta M. Corelli F. Gasparrini F. Messina F. Mugnaini C. J. Org. Chem. 2000; 65: 4736
- 26c Botta M. Corelli F. Manetti F. Mugnaini C. Tafi A. Pure Appl. Chem. 2001; 73: 1477
- 26d Kuriyama M. Soeta T. Hao X. Chen Q. Tomioka K. J. Am. Chem. Soc. 2004; 126: 8128
- 26e Castagnolo D. Giorgi G. Spinosa R. Corelli F. Botta M. Eur. J. Org. Chem. 2007; 3676
- 26f Petrov O. Gerova M. Petrova K. Ivanova Y. J. Heterocycl. Chem. 2009; 46: 44
- 26g Hage SE. Lajoie B. Feuillolay C. Roques C. Baziard G. Arch. Pharm. Chem. Life Sci. 2011; 344: 402
- 26h Syu J.-F. Lin H.-Y. Cheng Y.-Y. Tsai Y.-C. Ting Y.-C. Kuo T.-S. Janmanchi D. Wu P.-Y. Henschke JP. Wu H.-L. Chem. Eur. J. 2017; 23: 14515
- 27a Schmidt F. Stemmler RT. Rudolph J. Bolm C. Chem. Soc. Rev. 2006; 35: 454
- 27b Plobeck N. Delorme D. Wei Z.-Y. Yang H. Zhou F. Schwarz P. Gawell L. Gagnon H. Pelcman B. Schmidt R. Yue SY. Walpole C. Brown W. Zhou E. Labarre M. Payza K. St-Onge S. Kamassah A. Morin P.-E. Projean D. Ducharme J. Roberts E. J. Med. Chem. 2000; 43: 3878
- 27c Jolidon S. Alberati D. Dowle A. Fischer H. Hainzl D. Narquizian R. Norcross R. Pinard E. Bioorg. Med. Chem. Lett. 2008; 18: 5533
- 27d Aiman R. Gharpure MB. Curr. Sci. 1949; 18: 303
- 28a Niu L.-F. Xin Y.-C. Wang R.-L. Jiang F. Xu P.-F. Hui X.-P. Synlett 2010; 765
- 28b Sohtome Y. Shin B. Horitsugi N. Takagi R. Noguchi K. Nagasawa K. Angew. Chem. Int. Ed. 2010; 49: 7299
- 28c Liu G. Zhang S. Li H. Zhang T. Wang W. Org. Lett. 2011; 13: 828
- 28d Chauhan P. Chimni SS. Eur. J. Org. Chem. 2011; 1636
- 28e Jarava-Barrera C. Esteban F. Navarro-Ranninger C. Parra A. Alemán J. Chem. Commun. 2013; 49: 2001
- 28f Takizawa S. Hirata S. Murai K. Fujioka H. Sasai H. Org. Biomol. Chem. 2014; 12: 5827
- 28g Montesinos-Magraner M. Vila C. Blay G. Fernández I. Muñoz MC. Pedro JR. Adv. Synth. Catal. 2015; 357: 3047
- 28h Montesinos-Magraner M. Vila C. Cantón R. Blay G. Fernández I. Muñoz MC. Pedro JR. Angew. Chem. Int. Ed. 2015; 54: 6320
- 28i Poulsen PH. Feu KS. Paz BM. Jensen F. Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 8203
- 28j Montesinos-Magraner M. Cantón R. Vila C. Blay G. Fernández I. Muñoz MC. Pedro JR. RSC Adv. 2015; 5: 60101
- 28k Kumari P. Barik S. Khan NH. Ganguly B. Kureshy RI. Abdi SH. R. Bajaj HC. RSC Adv. 2015; 5: 69493
- 28l Qin L. Wang P. Zhang Y. Ren Z. Zhang X. Da C.-S. Synlett 2016; 27: 571
- 28m Vila C. Rendón-Patiño A. Montesinos-Magraner M. Blay G. Muñoz MC. Pedro JR. Adv. Synth. Catal. 2018; 360: 859
- 28n Montesinos-Magraner M. Vila C. Blay G. Pedro JR. Synthesis 2016; 48: 2151
- 29a Vidal J. Damestoy S. Guy L. Hannachi J.-C. Aubry A. Collet A. Chem. Eur. J. 1997; 3: 1691
- 29b Trost BM. Jonasson C. Angew. Chem. Int. Ed. 2003; 42: 2063
- 29c Tillman AL. Ye J. Dixon DJ. Chem. Commun. 2006; 1191
- 30 Bronner BM. Mackey JL. Houk KN. Garg NK. J. Am. Chem. Soc. 2012; 134: 13966
For reviews, see:
For seminal studies of chiral BINOL-derived phosphoric acids 1, see:
Reviews and accounts for catalytic enantioselective FC reaction:
Selected papers for ortho-selective catalytic asymmetric FC reaction of phenols with α,β-unsaturated carbonyl compounds, nitro olefins, α-keto esters, aldimines, isatins, CF3-ketimines, etc.
Only few para-selective catalytic asymmetric FC reaction of phenols has been reported:
See also see a review:
Synthesis of bifonazole:
A review for catalytic enantioselective diarylmethylamine synthesis:
Pharmacophores of diarylmethylamines are well known, see:
Recent selected papers for enantioselective Friedel–Crafts reaction of 1- and 2-naphthols:
See also for an excellent review: