Synthesis 2019; 51(02): 359-370
DOI: 10.1055/s-0037-1609639
short review
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic Group Transfer Reactions with Hypervalent Iodine­ Reagents

Manoj K. Ghosh
a   Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
,
Adam A. Rajkiewicz
a   Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
b   Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland   Email: m.kalek@cent.uw.edu.pl
,
a   Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
› Author Affiliations
We acknowledge the financial support from the National Science Centre Poland (grant no. 2016/22/E/ST5/00566).
Further Information

Publication History

Received: 30 August 2018

Accepted after revision: 07 October 2018

Publication Date:
08 November 2018 (online)


Abstract

In recent years, a plethora of synthetic methods that employ hypervalent iodine compounds donating an atom or a group of atoms to an acceptor molecule have been developed. Several of these transformations utilize organocatalysis, which complements well the economic and environmental advantages offered by iodine reagents. This short review provides a systematic survey of the organocatalytic approaches that have been used to promote group transfer from hypervalent iodine species. It covers both the reactions in which an organocatalyst is applied to activate the acceptor, as well as those that exploit the organocatalytic activation of the hypervalent iodine reagent itself.

1 Introduction

2 Organocatalytic Activation of Acceptor

2.1 Amine Catalysis via Enamine and Unsaturated Iminium Formation

2.2 NHC Catalysis via Acyl Anion Equivalent and Enolate Formation

2.3 Chiral Cation Directed Catalysis and Brønsted Base Catalysis via Pairing with Stabilized Enolates

3 Organocatalytic Activation of Hypervalent Iodine Reagent

3.1 Brønsted and Lewis Acid Catalysis

3.2 Lewis Base Catalysis

3.3 Radical Reactions with Organic Promoters and Catalysts

4 Summary and Outlook

 
  • References

    • 1a Varvoglis A. Tetrahedron 2010; 66: 5739
    • 1b Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther GW, Lu Z, Jonsson M, Kloo L. Angew. Chem. Int. Ed. 2011; 50: 11598
    • 2a Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. Wiley; Chichester: 2013
    • 2b Topics in Current Chemistry . Vol. 373. Wirth T. Springer; Switzerland: 2016
    • 2c Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
  • 3 Iodine Chemistry and Applications . Kaiho T. Wiley; Hoboken: 2015
  • 4 Yusubov MS, Zhdankin VV. Curr. Org. Synth. 2012; 9: 247
    • 5a Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 5b Yusubov MS, Maskaev AV, Zhdankin VV. ARKIVOC 2011; (i): 370
    • 5c Merritt EA, Olofsson B. Synthesis 2011; 517
    • 5d Brand JP, Gonzalez DF, Nicolai S, Waser J. Chem. Commun. 2011; 47: 102
    • 5e Dong D.-Q, Hao S.-H, Wang Z.-L, Chen C. Org. Biomol. Chem. 2014; 12: 4278
    • 5f Romero RM, Wöste TH, Muñiz K. Chem. Asian J. 2014; 9: 972
    • 5g Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2015; 54: 8876
    • 5h Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
    • 5i Li Y, Hari DP, Vita MV, Waser J. Angew. Chem. Int. Ed. 2016; 55: 4436
    • 5j Kohlhepp SV, Gulder T. Chem. Soc. Rev. 2016; 45: 6270
    • 5k Yusubov MS, Yoshimura A, Zhdankin VV. ARKIVOC 2016; (i): 342
    • 5l Lauriers AJ.-D, Legault CY. Asian J. Org. Chem. 2016; 5: 1078
    • 5m Fañanás-Mastral M. Synthesis 2017; 49: 1905
    • 5n Caramenti P, Waser J. Helv. Chim. Acta 2017; 100: e1700221
    • 5o Chatterjee N, Goswami A. Eur. J. Org. Chem. 2017; 3023
    • 5p Muñiz K. Acc. Chem. Res. 2018; 51: 1507
  • 6 Sousa e Silva F, Tierno A, Wengryniuk S. Molecules 2017; 22: 780
  • 7 Sreenithya A, Surya K, Sunoj RB. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017; 7: e1299
    • 8a Dohi T, Kita Y. Chem. Commun. 2009; 2073
    • 8b Parra A, Reboredo S. Chem. Eur. J. 2013; 19: 17244
    • 8c Harned AM. Tetrahedron Lett. 2014; 55: 4681
    • 8d Berthiol F. Synthesis 2015; 47: 587
    • 8e Narayan R, Manna S, Antonchick AP. Synlett 2015; 26: 1785
    • 8f Yusubov MS, Zhdankin VV. Resour.-Effic. Technol. 2015; 1: 49
    • 8g Fujita M. Tetrahedron Lett. 2017; 58: 4409
    • 9a Waser M. In Asymmetric Organocatalysis in Natural Product Syntheses. Springer; Vienna: 2012: 7
    • 9b Science of Synthesis: Asymmetric Organocatalysis 1: Lewis Base and Acid Catalysts. List B, Maruoka K. Thieme; Stuttgart: 2012
  • 10 Engqvist M, Casas J, Sundén H, Ibrahem I, Córdova A. Tetrahedron Lett. 2005; 46: 2053
  • 11 Allen AE, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 4986
    • 12a Allen AE, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 4260
    • 12b Skucas E, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 9090
  • 13 Wang Z, Li X, Huang Y. Angew. Chem. Int. Ed. 2013; 52: 14219
  • 14 Wang Z, Li L, Huang Y. J. Am. Chem. Soc. 2014; 136: 12233
  • 15 Lee S, MacMillan DW. C. Tetrahedron 2006; 62: 11413
  • 16 Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 17a Bugaut X. In Comprehensive Organic Synthesis . Knochel P, Molander GA. Elsevier; Amsterdam: 2014. 2nd ed. 424
    • 17b Gravel M, Holmes JM. In Comprehensive Organic Synthesis . Knochel P, Molander GA. Elsevier; Amsterdam: 2014. 2nd ed. 1384
  • 18 Toh QY, McNally A, Vera S, Erdmann N, Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 3772
  • 19 Rajkiewicz AA, Kalek M. Org. Lett. 2018; 20: 1906
  • 20 Gelat F, Patra A, Pannecoucke X, Biju AT, Poisson T, Besset T. Org. Lett. 2018; 20: 3897
  • 21 Yang W, Ma D, Zhou Y, Dong X, Lin Z, Sun J. Angew. Chem. Int. Ed. 2018; 57: 12097
    • 22a Science of Synthesis: Asymmetric Organocatalysis 2: Brønsted Base and Acid Catalysts, and Additional Topics. List B, Maruoka K. Thieme; Stuttgart: 2012
    • 22b Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
    • 22c Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
    • 22d Schörgenhumer J, Tiffner M, Waser M. Beilstein J. Org. Chem. 2017; 13: 1753
    • 22e Teng B, Lim WC, Tan C.-H. Synlett 2017; 28: 1272
    • 23a Fernández González D, Brand JP, Waser J. Chem. Eur. J. 2010; 16: 9457
    • 23b Fernández González D, Brand JP, Mondière R, Waser J. Adv. Synth. Catal. 2013; 355: 1631
  • 24 Wu X, Shirakawa S, Maruoka K. Org. Biomol. Chem. 2014; 12: 5388
  • 25 Kamlar M, Putaj P, Veselý J. Tetrahedron Lett. 2013; 54: 2097
  • 26 Kamlar M, Císařová I, Veselý J. Org. Biomol. Chem. 2015; 13: 2884
    • 27a Chowdhury R, Schörgenhumer J, Novacek J, Waser M. Tetrahedron Lett. 2015; 56: 1911
    • 27b Tiffner M, Stockhammer L, Schörgenhumer J, Röser K, Waser M. Molecules 2018; 23: 1142
  • 28 Wang X, Yang T, Cheng X, Shen Q. Angew. Chem. Int. Ed. 2013; 52: 12860
  • 29 Vinogradova EV, Müller P, Buchwald SL. Angew. Chem. Int. Ed. 2014; 53: 3125
    • 30a Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
    • 30b Min C, Seidel D. Chem. Soc. Rev. 2017; 46: 5889
    • 30c Merad J, Lalli C, Bernadat G, Maury J, Masson G. Chem. Eur. J. 2018; 24: 3925
  • 31 Niedermann K, Früh N, Vinogradova E, Wiehn MS, Moreno A, Togni A. Angew. Chem. Int. Ed. 2011; 50: 1059
  • 32 Niedermann K, Früh N, Senn R, Czarniecki B, Verel R, Togni A. Angew. Chem. Int. Ed. 2012; 51: 6511
  • 33 Nagata T, Matsubara H, Kiyokawa K, Minakata S. Org. Lett. 2017; 19: 4672
  • 34 Bhattarai B, Tay J.-H, Nagorny P. Chem. Commun. 2015; 51: 5398
    • 35a Petersen TB, Khan R, Olofsson B. Org. Lett. 2011; 13: 3462
    • 35b Jalalian N, Petersen TB, Olofsson B. Chem. Eur. J. 2012; 18: 14140
  • 36 Saito M, Kobayashi Y, Tsuzuki S, Takemoto Y. Angew. Chem. Int. Ed. 2017; 56: 7653
  • 37 Nicolaou KC, Simmons NL, Ying Y, Heretsch PM, Chen JS. J. Am. Chem. Soc. 2011; 133: 8134
    • 38a Denmark SE, Kuester WE, Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938
    • 38b Zheng S, Schienebeck CM, Zhang W, Wang H.-Y, Tang W. Asian J. Org. Chem. 2014; 3: 366
  • 39 Togo H, Katohgi M. Synlett 2001; 565
  • 40 Wang L, Liu J. Eur. J. Org. Chem. 2016; 1813
    • 41a Magnus P, Roe MB, Hulme C. J. Chem. Soc., Chem. Commun. 1995; 263
    • 41b Magnus P, Lacour J, Evans PA, Roe MB, Hulme C. J. Am. Chem. Soc. 1996; 118: 3406
  • 42 Chennaiah A, Vankar YD. Org. Lett. 2018; 20: 2611
  • 43 Zhang B, Mück-Lichtenfeld C, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2013; 52: 10792
  • 44 Zhang B, Studer A. Org. Lett. 2014; 16: 1216
  • 45 Kong W, Casimiro M, Fuentes N, Merino E, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 13086
  • 46 Shinomoto Y, Yoshimura A, Shimizu H, Yamazaki M, Zhdankin VV, Saito A. Org. Lett. 2015; 17: 5212
  • 47 Janhsen B, Studer A. J. Org. Chem. 2017; 82: 11703
  • 48 Yu P, Zheng S.-C, Yang N.-Y, Tan B, Liu X.-Y. Angew. Chem. Int. Ed. 2015; 54: 4041
  • 49 Yang N.-Y, Li Z.-L, Ye L, Tan B, Liu X.-Y. Chem. Commun. 2016; 52: 9052
  • 50 Pitre SP, McTiernan CD, Ismaili H, Scaiano JC. ACS Catal. 2014; 4: 2530
  • 51 Yang C, Yang J.-D, Le Y.-H, Li X, Cheng J.-P. J. Org. Chem. 2016; 81: 12357
    • 52a Huang H, Zhang G, Chen Y. Angew. Chem. Int. Ed. 2015; 54: 7872
    • 52b Zhou Q.-Q, Guo W, Ding W, Wu X, Chen X, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 11196
    • 52c Le Vaillant F, Courant T, Waser J. Angew. Chem. Int. Ed. 2015; 54: 11200
  • 53 Genovino J, Lian Y, Zhang Y, Hope TO, Juneau A, Gagné Y, Ingle G, Frenette M. Org. Lett. 2018; 20: 3229
  • 54 Sun D, Yin K, Zhang R. Chem. Commun. 2018; 54: 1335
  • 55 Le Vaillant F, Garreau M, Nicolai S, Gryn’ova G, Corminbeuf C, Waser J. Chem. Sci. 2018; 9: 5883