Synthesis, Table of Contents Synthesis 2018; 50(06): 1199-1208DOI: 10.1055/s-0037-1609202 short review © Georg Thieme Verlag Stuttgart · New YorkApplication of Trimethylsilanolate Alkali Salts in Organic Synthesis Kristýna Bürglová a Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic , Jan Hlaváč * b Department of Organic Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic Email: jan.hlavac@upol.cz› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract Trimethylsilanolate alkali salts are widely used in organic synthesis, mainly due to their solubility in common organic solvents. They are frequently used as nucleophiles in ester hydrolysis, both in solution and solid-phase chemistry. However, they have also been used as mild bases or as specific reagents in some chemical transformations. Reactions employing trimethylsilanolate alkali salts as the key component are typically performed under mild reaction conditions. This review summarizes the utilization of trimethylsilanolate alkali salts in various organic transformations. 1 Introduction 2 Properties of Alkali Metal Trimethylsilanolates (TMSO[M]) 3 Trimethylsilanolate Alkali Salts in Organic Synthesis 4 Conclusion Key words Key wordstrimethylsilanolate - ester hydrolysis - cleavage - alkali metals - coupling promoter - solid-phase chemistry - synthesis Full Text References References 1 Ladenburg A. Justus Liebigs Ann. Chem. 1872; 164: 300 2 Sommer LH. Pietrusza EW. Whitmore FC. J. Am. Chem. Soc. 1946; 68: 2282 3 Sommer LH. Green LQ. Whitmore FC. J. Am. Chem. Soc. 1949; 71: 3253 4 Schmidbaur H. Schmidt M. J. Am. Chem. Soc. 1962; 84: 3600 5 Andrianov KA. Alanichev VN. Tikhonov VS. Zh. Obshch. Khim. 1968; 38: 1402 6 Seyferth D. Alleston DL. Inorg. Chem. 1963; 2: 417 7 Schmidbaur H. Perez-Garcia JA. Arnold HS. Z. Anorg. Allg. Chem. 1964; 328: 105 8 Schmidbaur H. Findeiss W. Angew. Chem. 1964; 76: 752 9 Schmidbaur H. Waldmann S. Angew. Chem. 1964; 76: 753 10 Renkema KB. Matthews RJ. Bush TL. Hendges SK. Redding RN. Vance FW. Silver ME. Snow SA. Huffman JC. Inorg. Chim. Acta 1996; 244: 185 11 Hyde JF. Johannson OK. Daudt WH. Fleming RF. Laudenslager HB. Roche MP. J. Am. Chem. Soc. 1953; 75: 5615 12 Tatlock WS. Rochow EG. J. Org. Chem. 1952; 17: 1555 13 Weiss E. Hoffmann K. Grutzmacher HF. Chem. Ber. 1970; 103: 1190 14 Pauer F. Sheldrick GM. Acta Crystallogr., Sect. B: Struct. Sci. 1993; 49: 1283 15 Montejo M. Cruz Cabeza AJ. Partal Urena F. Márquez F. Lopez Gonzalez JJ. J. Phys. Chem. A 2007; 111: 2629 16 Ermakov AI. Kirichenko EA. Pimkin NI. Chizhov Y. Kleimenov VI. J. Struct. Chem. 1982; 23: 62 17 Dubchak IL. Shklover VE. Struchkov Y. Kopylov VM. Prikhod’ko PL. Zh. Strukt. Khim. 1983; 24: 59 18 Kononov OV. Lobkov VD. Igonin VA. Lindeman SV. Shklover VE. Struchkov YT. Metalloorg. Khim. 1991; 4: 784 19 Kononov OV. Zh. Obshch. Khim. 1995; 65: 1683 20 Kipping FS. J. Chem. Soc., Trans. 1912; 101: 2108 21 Kipping FS. J. Chem. Soc., Trans. 1912; 101: 2125 22 Kipping FS. Lloyd LL. J. Chem. Soc. (London) 1901; 79: 449 23 Martin G. Chem. Ber. 1912; 45: 403 24 Robinson R. Kipping FS. J. Chem. Soc., Trans. 1912; 101: 2156 25 Robinson R. Kipping FS. J. Chem. Soc., Trans. 1914; 105: 40 26 Kan PT. Lenk CT. Schaaf RL. J. Org. Chem. 1961; 26: 4038 27 Cusa NW. Kipping FS. J. Chem. Soc. 1932; 2205 28 Pink HS. Kipping FS. J. Chem. Soc., Trans. 1923; 123: 2830 29 Radecki A. Szyrmulewicz R. Wiad. Chem. 1960; 14: 23 30 Borisov SN. Voronkov MG. Lukevits E. Organosilicon Compounds of Group II Elements. In Organosilicon Heteropolymers and Heterocompounds. Plenum Press; New York: 1970: 127 31 Kather W. Torkelson A. Ind. Eng. Chem. 1954; 46: 381 32 Laganis ED. Chenard BL. Tetrahedron Lett. 1984; 25: 5831 33 Lovric M. Cepanec I. Litvic M. Bartolincic A. Vinkovic V. Croat. Chem. Acta 2007; 80: 109 34 Dziemidowicz J. Witt D. Sliwka-Kaszynska M. Rachon J. Synthesis 2005; 569 35 Rachon J. Goedken V. Walborsky HM. J. Org. Chem. 1989; 54: 1006 36 Bettayeb B. Descoteaux C. Benoit F. Chapados C. Berube G. J. Surfactants Deterg. 2009; 12: 237 37 Barrett AG. M. Kasdorf K. J. Am. Chem. Soc. 1996; 118: 11030 38 Chidambaram R. Kant J. Zhu J. Lajeunesse J. Sirard P. Ermann P. Schierling P. Lee P. Kronenthal D. Org. Process Res. Dev. 2002; 6: 632 39 Slavik P. Eigner V. Lhotak P. Tetrahedron 2016; 72: 6348 40 Merchant KJ. Tetrahedron Lett. 2000; 41: 3747 41 McPherson CG. Livingstone K. Jamieson C. Simpson I. Synlett 2016; 27: 88 42 Lee HS. Kim SH. Kim JN. Bull. Korean Chem. Soc. 2011; 32: 1748 43 Krapcho AP. Waterhouse D. Synth. Commun. 1998; 28: 3415 44 Li J. Smith D. Qiao JX. Huang S. Krishnananthan S. Wong HS. Salvati ME. Balasubramanian BN. Chen BC. Synlett 2009; 633 45 Ma B. Lee WC. Tetrahedron Lett. 2010; 51: 385 46 Lemoine H. Markovic D. Deguin B. J. Org. Chem. 2014; 79: 4358 47 Coe DM. Perciaccante R. Procopiou PA. Org. Biomol. Chem. 2003; 1: 1106 48 Rossi SA. Shimkin KW. Xu Q. Mori-Quiroz LM. Watson DA. Org. Lett. 2013; 15: 2314 49 Reeve W. Erikson CM. Aluotto PF. Can. J. Chem. 1979; 57: 2747 50 Citra MJ. Chemosphere 1999; 38: 191 51 Baker-Glenn CA. G. Barrett AG. M. Gray AA. Procopiou PA. Ruston M. Tetrahedron Lett. 2005; 46: 7427 52 Brunner M. Reinhard R. Rahm R. Maas G. Synlett 1994; 627 53 Shimkin KW. Gildner PG. Watson DA. Org. Lett. 2016; 18: 988 54 Denmark SE. Sweis RF. J. Am. Chem. Soc. 2001; 123: 6439 55 Denmark SE. Tymonko SA. J. Org. Chem. 2003; 68: 9151 56 Denmark SE. Regens CS. Acc. Chem. Res. 2008; 41: 1486 57 Dakarapu US. Bokka A. Asgari P. Trog G. Hua Y. Nguyen HH. Rahman N. Jeon J. Org. Lett. 2015; 17: 5792 58 Brown RC. D. Keily J. Karim R. Tetrahedron Lett. 2000; 41: 3247 59 Minta E. Boutonnet C. Boutard N. Martinez J. Rolland V. Tetrahedron Lett. 2005; 46: 1795 60 Okorochenkov S. Burglova K. Popa I. Hlavac J. Org. Lett. 2015; 17: 180 61 Burglova K. Okorochenkov S. Budesinsky M. Hlavac J. Eur. J. Org. Chem. 2017; 389 62 Kubovicova L. Burglova K. Hlavac J. Org. Biomol. Chem. 2016; 14: 4824