Synthesis 2018; 50(04): 723-741
DOI: 10.1055/s-0036-1591857
short review
© Georg Thieme Verlag Stuttgart · New York

Continuous Flow Conversion of Glycerol into Chemicals: An Overview

a   Sorbonne Universités, Université de Technologie de Compiègne, Centre de Recherche Royallieu, CS 60 319, 60203 Compiègne Cedex, France   Email: christophe.len@utc.fr
b   PSL Research University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
,
Frederic Delbecq
c   Ecole Supérieure de Chimie Organique et Minérale, 1 allée du Réseau Jean-Marie Buckmaster, 60200 Compiègne, France
,
Cristobal Cara Corpas
d   Universidad de Jaen, Department of Chemical, Environmental and Materials Engineering, Campus Las Lagunillas, 23071 Jaén, Spain
e   Universidad de Jaen, Center for Advances Studies in Energy and Environment (CEAEMA), 23071 Jaén, Spain
,
Encarnacion Ruiz Ramos
d   Universidad de Jaen, Department of Chemical, Environmental and Materials Engineering, Campus Las Lagunillas, 23071 Jaén, Spain
e   Universidad de Jaen, Center for Advances Studies in Energy and Environment (CEAEMA), 23071 Jaén, Spain
› Author Affiliations
Further Information

Publication History

Received: 26 September 2017

Accepted after revision: 10 November 2017

Publication Date:
14 December 2017 (online)


Abstract

This report highlights the recent advances for glycerol valorization to valuable products in liquid phase continuous flow systems using different types of catalysts and processes. The main biobased chemicals obtained from glycerol, such as acrolein, lactic acid, dihydroxyacetone, propanediols, glycerol carbonate, solketal, acetin, alkyl ethers, and oligomers, will be presented.

1 Introduction

2 Continuous Dehydration

2.1 Without Added Catalyst

2.2 With Acid Catalyst

3 Continuous Oxidation

4 Continuous Hydrogenolysis

5 Continuous Carbonatation

6 Continuous Ketalization

7 Continuous Esterification

8 Continuous Etherification

9 Continuous Oligomerization

10 Outlook

11 Conclusion

 
  • References

    • 1a Behr A. Westfechtel A. Perez Gomez J. Chem. Eng. Technol. 2008; 31: 700
    • 1b Biermann U. Friedt W. Lang S. Luhs W. Machmuller G. Metzger JM. Rusch Gen Klaas M. Schafer HJ. Schneider MP. Angew. Chem. Int. Ed. 2000; 39: 2207
    • 2a Galy N. Nguyen R. Yalgin H. Thiebault N. Luart D. Len C. J. Chem. Technol. Biotechnol. 2017; 92: 14
    • 2b Ayoub M. Abdullah AZ. Renewable Sustainable Energ. Rev. 2012; 16: 2671
    • 2c Pagliaro M. Ciriminna R. Kimura H. Rossi M. Della Pina C. Angew. Chem. Int. Ed. 2007; 46: 4434
    • 2d Gu Y. Jerome F. Green Chem. 2010; 12: 1127
    • 2e Beltran-Prieto JC. Kolomaznik K. Pecha J. Aust. J. Chem. 2013; 66: 511
    • 2f Katryniok B. Paul S. Bellière-Baca V. Rey P. Dumeignil F. Green Chem. 2010; 12: 2079
    • 2g Katryniok B. Kimura H. Skrzynska E. Girardon JS. Fongarland P. Capron M. Ducoulombier R. Mimura N. Paul S. Dumeignil F. Green Chem. 2011; 13: 1960
    • 2h Katryniok B. Paul S. Dumeignil F. ACS Catal. 2013; 3: 1819
    • 3a Haswell SJ. Watts P. Green Chem. 2003; 5: 240
    • 3b Frost CG. Mutton L. Green Chem. 2010; 12: 1687
    • 3c Wiles C. Watts P. Green Chem. 2012; 14: 38
    • 3d Newman SG. Jensen KF. Green Chem. 2013; 15: 1456
    • 3e Wiles C. Watts P. Green Chem. 2014; 16: 55
    • 3f Vaccaro L. Lanari D. Marrochi A. Strappaveccia G. Green Chem. 2014; 16: 3680
    • 3g Vaccaro L. Sustainable Flow Chemistry: Methods and Applications. Wiley-VCH; Weinheim: 2017: 317
    • 3h Shen T. Tang J. Tang C. Wu J. Wang L. Zhu C. Ying H. Org. Process Res. Dev. 2017; 21: 890
    • 3i Lima S. Chadwick D. Hellgardt K. RSC Adv. 2017; 7: 31404
    • 4a Polshettiwar V. Decottignies A. Len C. Fihri A. ChemSusChem 2010; 3: 502
    • 4b Fihri A. Luart D. Len C. Solhi A. Chevrin C. Polshettiwar V. Dalton Trans. 2011; 40: 3116
    • 4c Sartori G. Enderlin G. Herve G. Len C. Synthesis 2012; 44: 767
    • 4d Hassine A. Sebti S. Solhy A. Zahouily M. Len C. Hedhili MN. Fihri A. Appl. Catal., A 2013; 450: 13
    • 4e Sartori G. Enderlin G. Herve G. Len C. Synthesis 2013; 45: 330
    • 4f Decottignies A. Fihri A. Azemar G. Djedaini-Pilard F. Len C. Catal. Commun. 2013; 32: 101
    • 4g Gallagher-Duval S. Herve G. Sartori G. Enderlin G. Len C. New J. Chem. 2013; 37: 1989
    • 4h Enderlin G. Sartori G. Herve G. Len C. Tetrahedron Lett. 2013; 54: 3374
    • 4i Herve G. Sartori G. Enderlin G. Mackenzie G. Len C. RSC Adv. 2014; 4: 18558
    • 4j Herve G. Len C. RSC Adv. 2014; 4: 46926
    • 4k Lussier T. Herve G. Enderlin G. Len C. RSC Adv. 2014; 4: 46218
    • 4l Hassine A. Bouhrara M. Sebti S. Solhy A. Luart D. Len C. Fihri A. Curr. Org. Chem. 2014; 18: 3141
    • 4m Saggadi H. Luart D. Thiebault N. Polaert I. Estel L. Len C. Catal. Commun. 2014; 44: 15
    • 4n Saggadi H. Luart D. Thiebault N. Polaert I. Estel L. Len C. RSC Adv. 2014; 4: 21456
    • 4o Saggadi H. Polaert I. Luart D. Len C. Estel L. Catal. Today 2015; 255: 66
    • 5a Cintas P. Tagliapietra S. Calcio Gaudino E. Palmisano G. Cravotto G. Green Chem. 2014; 16: 1056
    • 5b Kuna E. Behling R. Valange S. Chatel G. Colmenares JC. Top. Curr. Chem. 2017; 375: 41
    • 5c Martina K. Manzoli M. Gaudino EC. Cravotto G. Catalysts 2017; 7: 98
    • 5d Domini CE. Alvarez MB. Silbestri GF. Cravotto G. Cintas P. Catalysts 2017; 7: 121
    • 6a Lipshutz BH. Gallou F. Handa S. ACS Sustainable Chem. Eng. 2016; 4: 5838
    • 6b Billamboz M. Len C. ChemSusChem 2015; 8: 1664
    • 6c Billamboz M. Mangin F. Banaszak-Leonard E. Chevrin Villette C. Drillaud N. Len C. J. Org. Chem. 2014; 79: 493
    • 6d Mangin F. Banaszak-Léonard E. Len C. RSC Adv. 2015; 5: 69616
    • 7a Peterson AA. Vogel F. Lachance RP. Froling M. Antal MJ. Tester JW. Energy Environ. Sci. 2008; 1: 32
    • 7b Len C. Luart D. Thiebault N. WO 2016042260, 2016
  • 8 Liu L. Ye XP. Bozell JJ. ChemSusChem 2012; 5: 1162
  • 9 Knez Z. Markocic E. Leitgeb M. Primozic M. Knez Hrncic M. Skerget M. Energy 2014; 77: 235
  • 10 Buhler W. Dinjus E. Ederer HJ. Kruse A. Mas C. J. Supercrit. Fluids 2002; 22: 37
  • 11 Cheng L. Liu L. Ye XP. J. Am. Oil Chem. Soc. 2013; 90: 601
  • 12 Antal MJ. Mok WS. L. Richards GN. Carbohydr. Res. 1990; 199: 111
  • 13 Ramayya S. Brittain A. De Almeida C. Mok W. Antal MJ. Jr. Fuel 1987; 66: 1364
  • 14 Watanabe M. Iida T. Aizawa Y. Aida TM. Inomata H. Bioresource Technol. 2007; 98: 1285
  • 15 Kondo T. Matsuo T. Sase Y. J. Chem. Eng. Jpn. 2013; 46: 732
    • 16a Lehr V. Sarlea M. Ott L. Vogel H. Catal. Today 2007; 121: 121
    • 16b Ott L. Bicker M. Vogel H. Green Chem. 2006; 8: 214
  • 17 Akizuki M. Oshima Y. Ind. Eng. Chem. Res. 2012; 51: 12253
  • 18 Sotto N. Cazorla C. Villette C. Billamboz M. Len C. ACS Sustainable Chem. Eng. 2016; 4: 6996
  • 19 Martinez FA. C. Balciunas EM. Salgado JM. Gonzales JM. D. Converti A. de Souza Oliveira RP. Trends Food Sci. Technol. 2013; 30: 70
  • 20 Kumar GS. Wee Y. Lee I. Sun HJ. Zhao X. Xia S. Kim S. Lee J. Wang P. Kim J. Chem. Eng. J. 2015; 276: 283
  • 21 Yuksel A. Koga H. Sasaki M. Goto M. Ind. Eng. Chem. Res. 2010; 49: 1520
  • 22 Yuksel A. Sasaki M. Goto M. Res. Chem. Int. 2011; 37: 131
  • 23 Zhang G. Jin F. Wu B. Cao J. Adam YS. Wang Y. Int. J. Chem. React. Eng. 2012; 10: A55
  • 24 Ramirez-Lopez CA. Ochoa-Gomez JR. Fernandez-Santos M. Gomez-Jiminez-Aberasturi O. Alonso-Vicario A. Torrecilla-Soria J. Ind. Eng. Chem. Res. 2010; 49: 6270
  • 25 Shimanouchi T. Ueno S. Shidahara K. Kimura Y. Chem. Lett. 2014; 43: 535
  • 26 Zope BN. Davis SE. Davis RJ. Top. Catal. 2012; 55: 24
  • 27 Moreira AB. F. Bruno AM. Souza MM. V. M. Manfro RL. Fuel Process. Technol. 2016; 144: 170
  • 28 Brandner A. Lehnert K. Bienholz A. Lucas M. Claus P. Top. Catal. 2009; 52: 278
  • 29 Wang Y. Zhou J. Guo X. RSC Adv. 2015; 5: 74611
  • 30 Maris EP. Davis RJ. J. Catal. 2007; 249: 328
  • 31 Chaminand J. Djakovitch L. Gallezot P. Marion P. Pinel C. Rosier C. Green Chem. 2004; 6: 359
  • 32 Huang Z. Cui F. Kang H. Chen J. Zhang X. Xia C. Chem. Mater. 2008; 20: 5090
  • 33 Zhu S. Gao X. Zhu Y. Fan W. Wang J. Li Y. Catal. Sci. Technol. 2015; 5: 1169
    • 34a Rode CV. Ghalwadkar AA. Org. Process Res. Dev. 2012; 16: 1043
    • 34b Rode CV. Ghalwadkar AA. Mane RB. Hengne AM. Jadkar ST. Biradar NS. Org. Process Res. Dev. 2010; 14: 1385
  • 35 Zhu S. Gao X. Zhu Y. Li Y. Green Chem. 2016; 18: 782
  • 36 Hao SL. Peng WC. Zhao N. Xiao FK. Wei W. Sun YH. J. Chem. Technol. Biotechnol. 2010; 85: 1499
  • 37 Lin X. Lu Y. Xi Y. Qu Y. Phillips DL. Liu C. Energy Fuels 2014; 28: 3345
  • 38 Qin LZ. Song MJ. Chen CL. Green Chem. 2010; 12: 1466
  • 39 Shozi ML. Dasireddy VD. B. C. Singh S. Mohlala P. Morgan DJ. Friedrich HB. ACS Sustainable Chem. Eng. 2016; 4: 5752
  • 40 Hu J. Liu X. Fan Y. Xie S. Pei Y. Qiao M. Fan K. Zhang X. Zong B. Chin. J. Catal. 2013; 34: 1020
  • 41 Teng WK. Ngoh GC. Yusoff R. Aroua MK. Energy Convers. Manage. 2014; 88: 484
  • 42 Nogueira DO. de Souza SP. Leao RA. C. Miranda LS. M. de Souza RO. M. A. RSC Adv. 2015; 5: 20945
  • 43 Guidi S. Calmanti R. Noe M. Perosa A. Selva M. ACS Sustainable Chem. Eng. 2016; 4: 6144
  • 44 Alvarez MG. Pliskova M. Segarra AM. Medina F. Figueras F. Appl. Catal., B 2012; 113–114: 212
  • 45 Leao RA. C. de Souza SP. Nogueira DO. Silva GM. A. Silva MV. M. Gutarra ML. E. Miranda LS. M. Castro AM. Junior II. de Souza RO. M. A. Catal. Sci. Technol. 2016; 6: 4743
  • 46 Nanda MR. Zhang Y. Yuan Z. Qin W. Ghaziaskar HS. Xu C. Renewable Sustainable Energy Rev. 2016; 56: 1022
  • 47 Monbaliu JC. M. Winter M. Chevalier B. Schmidt F. Jiang Y. Hoogendoorn R. Kousemaker MA. Stevens CV. Bioresour. Technol. 2011; 102: 9304
  • 48 Nanda MR. Yuan Z. Qin W. Ghaziaskar HS. Poirier MA. Xu C. Appl. Energy 2014; 123: 75
  • 49 Nanda MR. Yuan Z. Qin W. Ghaziaskar HS. Poirier MA. Xu C. Fuel 2014; 128: 113
  • 50 Oliveira PA. de Souza RO. M. A. Mota CJ. A. J. Braz. Chem. Soc. 2016; 27: 1832
  • 51 Guidi S. Noè M. Riello P. Perosa A. Selva M. Molecules 2016; 21: 657
  • 52 Hekmat D. Bauer R. Chem. Ing. Tech. 2006; 78: 621
  • 53 Fukumura T. Toda T. Seki Y. Kubo M. Shibasaki-Kitakawa N. Yonemoto T. Ind. Eng. Chem. Res. 2009; 48: 1816
  • 54 Rezayat M. Ghaziaskar HS. Green Chem. 2009; 11: 710
  • 55 Costa IC. R. Itabaiana I. Flores MC. Lourenco AC. Leite SG. F. Miranda LS. M. Leal IC. R. de Souza RO. M. A. J. Flow Chem. 2013; 3: 41
  • 56 Sutter M. Da Silva E. Duguet N. Raoul Y. Metay E. Lemaire M. Chem. Rev. 2015; 115: 8609
  • 57 Lemos CO. T. Rade LL. de S Barrozo MA. Fernandes LD. Cardozo-Filho L. Hori CE. Energy Fuels 2017; 31: 5158
    • 58a Ozbay N. Oktar N. Dogu G. Dogu T. Int. J. Chem. React. Eng. 2010; 8: A18
    • 58b Ozbay N. Oktar N. Dogu G. Dogu T. Ind. Eng. Chem. Res. 2012; 51: 8788
  • 59 Samoilov VO. Ramazanov DN. Nekhaev AI. Maximov AI. Bagdasarov LN. Fuel 2016; 172: 310
  • 60 Martin A. Richter M. Eur. J. Lipid Sci. Technol. 2011; 113: 100
  • 61 Galy N. Nguyen R. Blach P. Sambou S. Luart D. Len C. J. Ind. Eng. Chem. 2017; 51: 312