Synthesis 2017; 49(16): 3546-3557
DOI: 10.1055/s-0036-1588855
feature
© Georg Thieme Verlag Stuttgart · New York

Convergent Total Synthesis of (±)-Apomorphine via Benzyne Chemistry: Insights into the Mechanisms Involved in the Key Step

Ana Carolina A. Muraca
Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, Diadema, SP 09972-270, Brazil   Email: raminelli@unifesp.br
,
Givago P. Perecim
Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, Diadema, SP 09972-270, Brazil   Email: raminelli@unifesp.br
,
Alessandro Rodrigues
Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, Diadema, SP 09972-270, Brazil   Email: raminelli@unifesp.br
,
Cristiano Raminelli*
Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, Diadema, SP 09972-270, Brazil   Email: raminelli@unifesp.br
› Author Affiliations
We are grateful to São Paulo Research Foundation (FAPESP) for financial support (Grant No. 2015/09984-9). A.C.A.M thanks FAPESP and Coordination for the Improvement of Higher Education Personnel (CAPES) and G.P.P. thanks CAPES for their fellowships.
Further Information

Publication History

Received: 18 March 2017

Accepted after revision: 04 May 2017

Publication Date:
20 June 2017 (online)


Abstract

Convergent total synthesis of (±)-apomorphine hydrochloride was accomplished by an approach that employs in the key step a sequence of transformations involving a [4+2]-cycloaddition reaction followed by a hydrogen migration. Through this sequence of transformations, the desired aporphine core was obtained regioselectively in 75% isolated yield. Since only one regioisomer was produced in the key step of the synthesis, a polar [4+2]-cycloaddition mechanism was proposed. Furthermore, NMR experiments and theoretical calculations were carried out to elucidate the hydrogen migration mechanism. (±)-Apomorphine hydrochloride was achieved after 9 steps in an overall yield of 8% involving benzyne chemistry.

Supporting Information

 
  • References


    • For reviews, see:
    • 1a Tadross PM. Stoltz BM. Chem. Rev. 2012; 112: 3550
    • 1b Gampe CM. Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 3766

    • For selected examples, see:
    • 1c Gouthami P. Chegondi R. Chandrasekhar S. Org. Lett. 2016; 18: 2044
    • 1d Rossini AF. C. Muraca AC. A. Casagrande GA. Raminelli C. J. Org. Chem. 2015; 80: 10033
    • 1e Perecim GP. Rodrigues A. Raminelli C. Tetrahedron Lett. 2015; 56: 6848
    • 1f Moschitto MJ. Anthony DR. Lewis CA. J. Org. Chem. 2015; 80: 3339
    • 1g Allan KM. Stoltz BM. J. Am. Chem. Soc. 2008; 130: 17270

      For review, see:
    • 2a Wu D. Ge H. Liu SH. Yin J. RSC Adv. 2013; 3: 22727

    • For selected examples, see:
    • 2b Mizukoshi Y. Mikami K. Uchiyama M. J. Am. Chem. Soc. 2015; 137: 74
    • 2c Li J. Zhao Y. Lu J. Li G. Zhang J. Zhao Y. Sun X. Zhang Q. J. Org. Chem. 2015; 80: 109
    • 2d Shen Y.-M. Grampp G. Leesakul N. Hu H.-W. Xu J.-H. Eur. J. Org. Chem. 2007; 3718
    • 3a Bhunia A. Yetra SR. Biju AT. Chem. Soc. Rev. 2012; 41: 3140
    • 3b Kitamura T. Aust. J. Chem. 2010; 63: 987
    • 3c Pellissier H. Santelli M. Tetrahedron 2003; 59: 701
    • 3d Hart H. In The Chemistry of Triple-Bonded Functional Groups, Supplement C2 . Patai S. Wiley; Chichester: 1994. Chap. 18
    • 3e Gilchrist TL. In The Chemistry of Functional Groups, Supplement C . Patai S. Rappoport Z. Wiley; Chichester: 1983. Chap. 11
    • 3f Hoffmann RW. Dehydrobenzene and Cycloalkynes . Academic Press; New York: 1967
    • 4a Logullo FM. Seitz AH. Friedman L. Org. Synth. 1973; 5: 54
    • 4b Stiles M. Miller RG. Burckhardt U. J. Am. Chem. Soc. 1963; 85: 1792
    • 5a Fieser LF. Haddadin MJ. Org. Synth. 1973; 5: 1037
    • 5b Le Goff E. J. Am. Chem. Soc. 1962; 84: 3786
    • 6a Wittig G. Org. Synth. 1963; 4: 964
    • 6b Wittig G. Erhard K. Chem. Ber. 1958; 91: 895
    • 7a Tsujiyama S. Suzuki K. Org. Synth. 2009; 11: 488
    • 7b Matsumoto T. Hosoya T. Katsuki M. Suzuki K. Tetrahedron Lett. 1991; 32: 6735
    • 8a Lin W. Chen L. Knochel P. Tetrahedron 2007; 63: 2787
    • 8b Lin W. Ilgen F. Knochel P. Tetrahedron Lett. 2006; 47: 1941
    • 8c Lin W. Sapountzis I. Knochel P. Angew. Chem. Int. Ed. 2005; 44: 4258
    • 8d Sapountzis I. Lin W. Fisher M. Knochel P. Angew. Chem. Int. Ed. 2004; 43: 4364
    • 9a Campbell CD. Rees CW. J. Chem. Soc. C 1969; 752
    • 9b Campbell CD. Rees CW. J. Chem. Soc. C 1969; 748
    • 9c Campbell CD. Rees CW. J. Chem. Soc. C 1969; 742
  • 10 Himeshima Y. Sonoda T. Kobayashi H. Chem. Lett. 1983; 1211

    • For reviews, see:
    • 11a Dubrovskiy AV. Markina NA. Larock RC. Org. Biomol. Chem. 2013; 11: 191
    • 11b Yoshida H. Takaki K. Synlett 2012; 23: 1725
    • 11c Yoshida H. Ohshita J. Kunai A. Bull. Chem. Soc. Jpn. 2010; 83: 199
    • 11d Guitián E. Pérez D. Peña D. Top. Organomet. Chem. 2005; 14: 109
    • 12a Atkinson DJ. Sperry J. Brimble MA. Synthesis 2010; 911
    • 12b Bronner SM. Garg NK. J. Org. Chem. 2009; 74: 8842
    • 12c Peña D. Iglesias B. Quintana I. Pérez D. Guitián E. Castedo L. Pure Appl. Chem. 2006; 78: 451
    • 12d Peña D. Cobas A. Pérez D. Guitián E. Synthesis 2002; 1454
    • 12e Peña D. Pérez D. Guitián E. Castedo L. J. Am. Chem. Soc. 1999; 121: 5827
    • 13a Shi F. Waldo JP. Chen Y. Larock RC. Org. Lett. 2008; 10: 2409
    • 13b Zhijian L. Larock RC. J. Org. Chem. 2006; 71: 3198
    • 13c Yoshida H. Fukushima H. Ohshita J. Kunai A. Angew. Chem. Int. Ed. 2004; 43: 3935
    • 13d Tambar UK. Stoltz BM. J. Am. Chem. Soc. 2005; 127: 5340
    • 13e Peña D. Escudero S. Pérez D. Guitián E. Castedo L. Angew. Chem. Int. Ed. 1998; 37: 2659
    • 14a Moreira BV. Muraca AC. A. Raminelli C. Synthesis 2017; 49: 1093
    • 14b Gebara KS. Casagrande GA. Raminelli C. Tetrahedron Lett. 2011; 52: 2849
    • 14c Toledo FT. Comasseto JV. Raminelli C. J. Braz. Chem. Soc. 2010; 21: 2164
    • 14d Toledo FT. Marques H. Comasseto JV. Raminelli C. Tetrahedron Lett. 2007; 48: 8125
    • 15a Shakirov R. Vinogradova VI. Aripova SF. Sultankhodzhaev MN. Bessonova IA. Akhmedzhanova VI. Tulyaganov TS. Salimov BT. In Natural Compounds (Alkaloids): Plant Sources, Structure and Properties . Azimova SS. Yunusov MS. Springer; New York: 2013: 336
    • 15b Osorio EJ. Robledo SM. Bastida J. In The Alkaloids . Vol. 66. Cordell GA. Academic Press; San Diego: 2008: 126
  • 16 Shamma M. Guinaudeau H. Nat. Prod. Rep. 1984; 1: 201
    • 17a Singh IP. Bodiwala HS. Nat. Prod. Rep. 2010; 27: 1781
    • 17b Kashiwada Y. Aoshima A. Ikeshiro Y. Chen Y.-P. Furukawa H. Itoigawa M. Fujioka T. Mihashi K. Cosentino LM. Morris-Natschke SL. Lee K.-H. Bioorg. Med. Chem. 2005; 13: 443
    • 18a Wiart C. Lead Compounds from Medicinal Plants for the Treatment of Cancer. Academic Press; Waltham: 2013: 35
    • 18b Suresh HM. Shivakumar B. Shivakumar SI. Int. J. Plant Res. 2012; 2: 57
    • 18c Ponnala S. Chaudhary S. González-Sarrias A. Seeram NP. Harding WW. Bioorg. Med. Chem. Lett. 2011; 21: 4462
    • 18d Stévigny C. Bailly C. Quetin-Leclercq J. Curr. Med. Chem. Anticancer Agents 2005; 5: 173
    • 19a Booth RG. In Foye’s Principles of Medicinal Chemistry . Lemke TL. Williams DA. Roche VF. Zito SW. Lippincott Williams & Wilkins; Philadelphia: 2013. 7th ed. 430
    • 19b Zhang A. Zhang Y. Branfman AR. Baldessarini RJ. Neumeyer JL. J. Med. Chem. 2007; 50: 171
    • 20a Tyne HL. Parsons J. Sinnott A. Fox SH. Fletcher NA. Steiger MJ. J. Neurol. 2004; 251: 1370
    • 20b Poewe W. Wenning GK. Mov. Disord. 2000; 15: 789
    • 21a Eardley I. Donatucci C. Corbin J. El-Meliegy A. Hatzimouratidis K. McVary K. Munarriz R. Lee SW. J. Sex. Med. 2010; 7: 524
    • 21b Hatzimouratidis K. Amar E. Eardley I. Giuliano F. Hatzichristou D. Montorsi F. Vardi Y. Wespes E. Eur. Urol. 2010; 57: 804
    • 21c Hatzimouratidis K. Hatzichristou DG. Drugs 2005; 65: 1621
    • 21d Hatzichristou DG. Pescatori ES. BJU Int. 2001; 88: 11

      For Pschorr reactions, see:
    • 22a Li JJ. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications. 4th ed. Springer-Verlag; Berlin: 2009: 450
    • 22b Smith MB. March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms and Structure. 6th ed. Wiley; Hoboken: 2007: 925
    • 22c Laali KK. Shokouhimehr M. Curr. Org. Synth. 2009; 6: 193
    • 22d Leake PH. Chem. Rev. 1956; 56: 27

      For photochemical reactions, see:
    • 23a Bach T. Hehn JP. Angew. Chem. Int. Ed. 2011; 50: 1000
    • 23b Chuang T.-H. Li C.-F. Lee H.-Z. Wen Y.-C. J. Org. Chem. 2013; 78: 4974
    • 23c Barolo SM. Teng X. Cuny GD. Rossi RA. J. Org. Chem. 2006; 71: 8493
    • 23d Lenz GR. J. Org. Chem. 1988; 53: 4447
    • 23e Cava MP. Stern P. Wakisaka K. Tetrahedron 1973; 29: 2245
    • 23f Kupchan SM. Moniot JL. Kanojia RM. O’Brien J. J. Org. Chem. 1971; 36: 2413

      For palladium-catalyzed reactions, see:
    • 24a Hellal M. Singh S. Cuny GD. Tetrahedron 2012; 68: 1674
    • 24b Lee KM. Kim JC. Kang P. Lee WK. Eum H. Ha H.-J. Tetrahedron 2012; 68: 883
    • 24c Lafrance M. Blaquière N. Fagnou K. Eur. J. Org. Chem. 2007; 811
    • 24d Campeau L.-C. Fagnou K. Chem. Commun. 2006; 1253
    • 24e Lafrance M. Blaquière N. Fagnou K. Chem. Commun. 2004; 2874

      For anthranilic acid-derived benzyne chemistry, see:
    • 25a Atanes N. Castelo L. Guitián E. Saá C. Saá JM. Suau R. J. Org. Chem. 1991; 56: 2984
    • 25b Gómez B. Martín G. Guitián E. Castedo L. Saá JM. Tetrahedron 1993; 49: 1251
    • 25c Atanes N. Castedo L. Cobas A. Guitián E. Saá C. Saá JM. Tetrahedron 1989; 45: 7947
  • 26 Liu D. Venhuis BJ. Wikström HV. Dijkstra D. Tetrahedron 2007; 63: 7264
    • 27a Leroy C. Dupas G. Bourguignon J. Quéguiner G. Tetrahedron 1994; 50: 13135
    • 27b Brossi A. Dolan LA. Teitel S. Org. Synth. 1988; 6: 1
  • 28 Ikawa T. Nishiyama T. Nosaki T. Takagi A. Akai S. Org. Lett. 2011; 13: 1730
  • 29 Silva ET. Câmara CA. Antunes OA. C. Barreiro EJ. Fraga CA. M. Synth. Commun. 2008; 38: 784
  • 30 Jones KM. Karier P. Klussmann M. ChemCatChem 2012; 4: 51
  • 31 Shi X.-X. Ni F. Shang H.-X. Yan M.-L. Su J.-Q. Tetrahedron: Asymmetry 2006; 17: 2210
  • 32 Armarego WL. F. Perrin DD. Purification of Laboratory Chemicals . 4th ed. Butterworth-Heinemann; Oxford: 1996
  • 33 Watson SC. Eastham JF. J. Organomet. Chem. 1967; 9: 165
  • 34 Leonard J. Lygo B. Procter G. Advanced Practical Organic Chemistry . 2nd ed. CRC Press; Boca Raton: 1998: 102
  • 35 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Scalmani G. Barone V. Mennucci B. Petersson GA. Nakatsuji H. Caricato M. Li X. Hratchian HP. Izmaylov AF. Bloino J. Zheng G. Sonnenberg JL. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Vreven T. Montgomery JA. Jr. Peralta JE. Ogliaro F. Bearpark M. Heyd JJ. Brothers E. Kudin KN. Staroverov VN. Kobayashi R. Normand J. Raghavachari K. Rendell A. Burant JC. Iyengar SS. Tomasi J. Cossi M. Rega N. Millam JM. Klene M. Knox JE. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Martin RL. Morokuma K. Zakrzewski VG. Voth GA. Salvador P. Dannenberg JJ. Dapprich S. Daniels AD. Farkas Ö. Foresman JB. Ortiz JV. Cioslowski J. Fox DJ. Gaussian 09 . Gaussian, Inc; Wallingford CT: 2009
  • 36 Foresman JB. Keith TA. Wiberg KB. Snoonian J. Frisch MJ. J. Phys. Chem. 1996; 100: 16098
  • 37 Legault CY. CYLview Version 1.0 BETA . Université de Sherbrooke; Sherbrooke: 2009. http //www.cylview.org
  • 38 Kita Y. Akai S. Ajimura N. Yoshigi M. Tsugosji T. Yasuda H. Tamura Y. J. Org. Chem. 1986; 51: 4150
  • 39 Enthaler S. Erre G. Junge K. Addis D. Kadyrov R. Beller M. Chem. Asian J. 2008; 3: 1104
  • 40 Tummatorn J. Khorphueng P. Petsom A. Muangsin N. Chaichit N. Roengssumran S. Tetrahedron 2007; 63: 11878