Synthesis 2017; 49(14): 3084-3090
DOI: 10.1055/s-0036-1588835
feature
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Synthesis of 2-Aminobenzothiazoles through Tandem Reaction

Wan Xu
a   School of Chemistry and Environment Engineering, Wuhan Institute of Technology, 430074, P. R. of China   Email: dzb04982@wit.edu.cn
,
Meng-Tian Zeng
a   School of Chemistry and Environment Engineering, Wuhan Institute of Technology, 430074, P. R. of China   Email: dzb04982@wit.edu.cn
,
Min Liu
a   School of Chemistry and Environment Engineering, Wuhan Institute of Technology, 430074, P. R. of China   Email: dzb04982@wit.edu.cn
,
Sha-Sha Liu
a   School of Chemistry and Environment Engineering, Wuhan Institute of Technology, 430074, P. R. of China   Email: dzb04982@wit.edu.cn
,
Yue-Sheng Li
b   Nonpower Nuclear Technology Collaborative Innovation Center, Hubei University of Science & Technology, Xianning 437100, P. R. of China
,
Zhi-Bing Dong*
a   School of Chemistry and Environment Engineering, Wuhan Institute of Technology, 430074, P. R. of China   Email: dzb04982@wit.edu.cn
› Author Affiliations
We thank the following for financial support: The National Natural Science Foundation of China (21302150, 11405050), Hubei Provincial Department of Education (D20131501), Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry [2012]1707, President Foundation of Wuhan Institute of Technology (2014038), the Foundation of Chutian Distinguished Fellow from Hubei Provincial Department of Education, and the Foundation of High-End Talent Cultivation Program from Wuhan Institute of Technology.
Further Information

Publication History

Received: 18 March 2017

Accepted after revision: 24 April 2017

Publication Date:
24 May 2017 (online)


Abstract

A variety of 2-aminobenzothiazoles were synthesized by using 2-chloroanilines and dithiocarbamates through a tandem approach in the presence of Pd(PPh3)4 and t-BuOK. The facile and efficient protocol enabled the reaction to proceed at a good rate with excellent yields.

Supporting Information

 
  • References and Notes

  • 1 Benteau V. Besson T. Guillar J. Pfeiffer B. Eur. J. Med. Chem. 1999; 34: 1053
  • 2 Yalchin I. Oren I. Sener E. Akin A. Ucaryurk N. Eur. J. Med. Chem. 1992; 27: 401
  • 3 Palmer PJ. Trigg RB. Warrington JV. J. Med. Chem. 1971; 14: 248
  • 4 Burger A. Sawhey SN. J. Med. Chem. 1968; 11: 270
  • 5 Kamlesh N. Kale M. Pharm. Lett. 2011; 3: 276
  • 6 Siddiqui NA. Siddiqui AA. Asian J. Chem. 2004; 16: 1005
  • 7 Kale M. Mene D. Int. J. Pharma Bio Sci. 2013; 4: 503
  • 8 Chen YX. Qian LF. Zhang W. Han B. Angew. Chem. Int. Ed. 2008; 47: 9330
  • 9 Bahrami K. Khodaei MM. Naali F. J. Org. Chem. 2008; 73: 6835
  • 10 Chakraborti AK. Rudrawar S. Jadhav KB. Kaur G. Chankeshwara SV. Green Chem. 2007; 9: 1335
  • 11 Li Y. Wang YL. Wang JY. Chem. Lett. 2006; 35: 460
  • 12 Batista RM. F. Costa SP. G. Raposo MM. Tetrahedron Lett. 2004; 45: 2825
  • 13 Ranu BC. Jana R. Dey S. Chem. Lett. 2004; 33: 274
  • 14 Kodomari M. Tamaru Y. Aoyama T. Synth. Commun. 2004; 34: 3029
  • 15 Mali JR. Jawale DV. Londhe BS. Mane RA. Green Chem. Lett. Rev. 2010; 3: 209
  • 16 Moghaddam FM. Ismaili H. Bardajee GR. Heteroat. Chem. 2006; 17: 136
  • 17 Itoh T. Nagata K. Ishikawa H. Ohsawa A. Heterocycles 2004; 62: 197
  • 18 Chen C. Chen YJ. Tetrahedron Lett. 2004; 45: 113
  • 19 Mourtas S. Gatos D. Barlos K. Tetrahedron Lett. 2001; 42: 2201
  • 20 Hutchinson I. Stevens MF. G. Westwel AD. Tetrahedron Lett. 2000; 41: 425
  • 21 Benedi C. Bravo F. Uriz P. Fernandez E. Claver C. Castillon S. Tetrahedron Lett. 2003; 44: 6073
  • 22 Joyce LL. Evindar G. Batey RA. Chem. Commun. 2004; 446
  • 23 Mu XJ. Zou JP. Zeng RS. Wu JC. Tetrahedron Lett. 2005; 46: 4345
  • 24 Moghaddam FM. Boeini HZ. Synlett 2005; 1612
  • 25 Evindar G. Batey RA. J. Org. Chem. 2006; 71: 1802
  • 26 Itoh T. Mase T. Org. Lett. 2007; 9: 3687
  • 27 Downer-Riley NK. Jackson YA. Tetrahedron 2008; 64: 7741
    • 28a Muthusamy S. Paeamasivam R. Ramakrishnan VT. J. Heterocycl. Chem. 1991; 28: 759
    • 28b Wang J. Peng F. Jiang ZL. Wang L. Bai J. Pan Y. Tetrahedron Lett. 2008; 49: 467
    • 29a Evinder G. Batey RA. Org. Lett. 2003; 5: 133
    • 29b Joyce LL. Batey RA. Org. Lett. 2009; 11: 2792
    • 29c Sharma S. Pathare RS. Maurya AK. Gopal K. Roy TK. Sawant DM. Pardasani RT. Org. Lett. 2016; 18: 356
    • 29d Sahoo SK. Banerjee A. Chakraborty S. Patel BK. ACS Catal. 2012; 2: 544
    • 29e Banerjee A. Santra SK. Rout SK. Patel BK. Tetrahedron 2013; 69: 9096
    • 29f Wang JK. Zong YX. Zhang XX. Gao Y. Li ZL. Yue GR. Quan ZJ. Wang CL. Synlett 2014; 25: 2143
    • 30a Guo YJ. Tang RY. Zhong P. Li JH. Tetrahedron Lett. 2010; 51: 649
    • 30b Khatun N. Jamir L. Ganesh M. Patel BK. RSC Adv. 2012; 2: 11557
    • 30c Xu W. Zeng MT. Liu M. Liu X. Chang CZ. Zhu H. Li YS. Dong ZB. Chem. Lett. 2017; DOI: 10.1246/cl.170023