Synlett 2016; 27(18): 2541-2552
DOI: 10.1055/s-0036-1588621
account
© Georg Thieme Verlag Stuttgart · New York

Photocatalytic EZ Isomerization of Alkenes

J. B. Metternich
Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany   Email: ryan.gilmour@uni-muenster.de
,
R. Gilmour*
Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany   Email: ryan.gilmour@uni-muenster.de
› Author Affiliations
Further Information

Publication History

Received: 19 August 2016

Accepted after revision: 19 September 2016

Publication Date:
11 October 2016 (online)


Abstract

The current renaissance of organic photochemistry and photocatalysis has emboldened non-specialists to explore this rich landscape in search of solutions to long-standing challenges in synthesis. Many iconic stoichiometric photochemical transformations that were often platforms for mechanistic explorations have found limited application in contemporary synthesis, likely due to a perceived difficulty in reaction execution and the dearth of scope. Fortunately, many of these valuable processes are now being translated into robust methods, often with the aid of catalysis. The selective EZ photochemical isomerization of olefins exemplifies this growing trend. Whilst examples of photochemical isomerization reactions are ubiquitous in physical organic textbooks, their intricate mechanistic delineations often contrast starkly with highly restricted substrate scopes: In the case of carbogenic scaffolds, electron-rich styrenes and stilbenes continue to dominate despite their limited synthetic potential. In this Account, our recent development of a photocatalytic isomerization of activated olefins is discussed. Inspired by the antipodal ZE process with retinal that constitutes the basis of the mammalian visual system, and a qualitative report describing the reverse EZ directionality enabled by crystalline (–)-riboflavin localized in the eye, critical noncovalent interactions have been distilled allowing this latter biological process to be reengineered. The result is an expansive, operationally trivial isomerization of substrates containing the cinnamyl motif using an inexpensive, readily available photocatalyst. Reliant on a selective excitation mechanism, this process complements the pioneering work of Hammond, Arai, and others by expanding the scope of olefin isomerization. In the case of carboxylic acids, it was possible to generate the coumarin scaffold directly by exploiting the two discrete activation modes of riboflavin sequentially, namely energy transfer (ET) followed by single electron transfer (SET). This first example of a “one catalyst, two activation modes” strategy constitutes a photocatalytic variant of covalent cascade catalysis and provides a new entry to an important class of pharmaceutical building blocks. Reaction development is placed in an historical context, and key findings from other laboratories that facilitated the study are highlighted.

1 Introduction

2 A Brief Introduction to Photochemistry

3 Photochemical Isomerization of Olefins

4 The Bioinspired Isomerization of Activated Olefins

5 Emulating Coumarin Biosynthesis with (–)-Riboflavin

6 Conclusions

 
  • References

  • 1 Siau WY, Zhang Y, Zhao Y. Top. Curr. Chem. 2012; 327: 33
  • 2 Grubbs RH. Angew. Chem. Int. Ed. 2006; 45: 3760
    • 3a Grubbs RH, Miller SJ, Fu GC. Acc. Chem. Res. 1995; 28: 446
    • 3b Blackwell HE, O’Leary DJ, Chatterjee AK, Washenfelder RA, Bussmann DA, Grubbs RH. J. Am. Chem. Soc. 2000; 122: 58
    • 3c Choi T.-L, Lee CW, Chatterjee AK, Grubbs RH. J. Am. Chem. Soc. 2001; 123: 10417
    • 3d Chatterjee AK, Choi T.-L, Sanders DP, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360
    • 3e Connon SJ, Blechert S. Angew. Chem. Int. Ed. 2003; 42: 1900
    • 3f Schrock RR, Hoveyda AH. Angew. Chem. Int. Ed. 2003; 42: 4592
    • 4a Ibrahem I, Yu M, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3844
    • 4b Flook MM, Jiang AJ, Schrock RR, Müller P, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 7962
    • 4c Jiang AJ, Zhao Y, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 16630
    • 4d Endo K, Grubbs RH. J. Am. Chem. Soc. 2011; 133: 8525
    • 4e Keitz BK, Endo K, Patel PR, Herbert MB, Grubbs RH. J. Am. Chem. Soc. 2012; 134: 693
    • 4f Mann TJ, Speed AW. H, Schrock RR, Hoveyda AH. Angew. Chem. Int. Ed. 2013; 52: 8395
    • 5a Pünner F, Schmidt A, Hilt G. Angew. Chem. Int. Ed. 2012; 51: 1270
    • 5b Zhuo L.-G, Yao Z.-K, Yu Z.-X. Org. Lett. 2013; 15: 4634
    • 5c Chen C, Dugan TR, Brennessel WW, Weix DJ, Holland PL. J. Am. Chem. Soc. 2014; 136: 945
    • 5d Timsina YN, Biswas S, Rajanbabu TV. J. Am. Chem. Soc. 2014; 136: 6215
    • 5e Larsen CR, Erdogan G, Grotjahn DB. J. Am. Chem. Soc. 2014; 136: 1226
    • 5f Hilt G. ChemCatChem 2014; 6: 2484
    • 5g Crossely SW. M, Barabe F, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 16788
  • 6 Fleming I. Molecular Orbitals and Organic Reactions, Student Edition . John Wiley & Sons; Chichester: 2009
    • 7a Wyman GM. Chem. Rev. 1955; 55: 625
    • 7b Hammond GS, Turro NJ, Leermakers PA. J. Phys. Chem. 1962; 66: 1144
    • 7c Schulte-Frohlinde D, Blume H, Güsten H. J. Phys. Chem. 1962; 66: 2486
    • 7d Hammond GS, Saltiel J, Lamola AA, Turro NJ, Bradshaw JS, Cowan DO, Counsell RC, Vogt V, Dalton C. J. Am. Chem. Soc. 1964; 86: 3197
    • 7e Ishigami T, Nakazato K, Uehara M, Endo T. Tetrahedron Lett. 1979; 20: 863
    • 7f Lewis FD, Oxman JD. J. Am. Chem. Soc. 1981; 103: 7354
    • 7g Lewis FD, Howard DK, Oxman JD, Upthagrove AL, Quillen SL. J. Am. Chem. Soc. 1986; 108: 5964
    • 7h Ramamurthy P, Morlet-Savary F, Fouassier JP. J. Chem. Soc., Faraday Trans. 1993; 89: 465
    • 7i Ramamurthy V, Butt Y, Yang C, Yang P, Liu RS. H. J. Org. Chem. 1973; 38: 1247
    • 8a Arrhenius SA. Z. Phys. Chem. 1887; 1: 631
    • 8b Laidler KJ. Archive for History of Exact Sciences 1985; 31: 43
    • 9a Arrhenius SA. Z. Phys. Chem. 1889; 4: 96
    • 9b Arrhenius SA. Z. Phys. Chem. 1889; 4: 226
    • 10a Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 10b Colby Davie EA, Mennen SM, Xu Y, Miller SJ. Chem. Rev. 2007; 107: 5759
    • 10c Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 10d MacMillan DW. C. Nature 2008; 455: 304
    • 11a Franck J, Dymond EG. Trans. Faraday Soc. 1926; 21: 536
    • 11b Hoffmann N. Chem. Rev. 2008; 108: 1052
    • 11c Turro NJ, Ramamurthy V, Scaiano JC. Modern Molecular Photochemistry of Organic Molecules . University Science Books; Sausalito: 2010
    • 11d Sauer M, Hofkens J, Enderlein J. Handbook of Fluorescence Spectroscopy and Imaging . Wiley-VCH; Weinheim: 2011
    • 12a Hoffmann R, Woodward RB. J. Am. Chem. Soc. 1965; 87: 2046
    • 12b Salem L. J. Am. Chem. Soc. 1968; 90: 553
    • 12c Herndon WC. Chem. Rev. 1972; 72: 157
    • 12d Wu J, Sun L, Dai W.-M. Tetrahedron 2006; 62: 8360
    • 12e Hurtley AE, Lu Z, Yoon TP. Angew. Chem. Int. Ed. 2014; 53: 8991
  • 13 Jablonski A. Nature 1933; 131: 839
    • 14a Lewis GN, Kasha M. J. Am. Chem. Soc. 1944; 66: 2100
    • 14b Kasha M. Discuss. Faraday Soc. 1950; 9: 14
    • 15a Ermler WC, Ross RB, Christiansen PA. Adv. Quant. Chem. 1988; 19: 139
    • 15b Khudyakov IV, Serebrennikov YA, Turro NJ. Chem. Rev. 1993; 93: 537
    • 15c Michl J. J. Am. Chem. Soc. 1996; 118: 3568
    • 15d Marian CM. WIREs Comput. Mol. Sci. 2012; 2: 187
  • 16 Lamola AA, Hammond GS. J. Chem. Phys. 1965; 43: 2129
    • 17a Marcus RA. J. Chem. Phys. 1956; 24: 966
    • 17b Marcus RA. J. Chem. Phys. 1956; 24: 979
    • 18a Weller A. Z. Phys. Chem. 1982; 133: 93
    • 18b Karvarnos GJ, Turro NJ. Chem Rev. 1986; 86: 401
    • 18c Hoffmann N. J. Photochem. Photobiol. C 2008; 9: 43
  • 19 Förster T. Ann. Phys. (Berlin) 1948; 437: 55
  • 20 Dexter DL. J. Chem. Phys. 1953; 21: 836
    • 21a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 21b Zhao J, Wu W, Sun J, Guo S. Chem. Soc. Rev. 2013; 42: 5323
    • 21c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 21d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 22a Saltiel J, Chang DW. L, Megarity ED, Rousseau AD, Shannon PT, Thomas B, Uriarte AK. Pure Appl. Chem. 1975; 41: 559
    • 22b Weiss RM, Washel A. J. Am. Chem. Soc. 1979; 101: 6131
    • 22c Smedarchina Z. Int. J. Quantum. Chem. 1986; 29: 1429
    • 22d Saltiel J, Waller AS, Sears Jr DF. J. Am. Chem. Soc. 1993; 115: 2453
    • 22e Balzer B, Hahn S, Stock G. Chem. Phys. Lett. 2003; 379: 351
    • 22f Polli D, Altoe P, Weingart O, Spillane KM, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies RA, Garavelli M, Cerullo G. Nature 2010; 467: 440
    • 23a Saltiel J. J. Am. Chem. Soc. 1967; 89: 1036
    • 23b Caldwell RA, Cao CV. J. Am. Chem. Soc. 1982; 104: 6174
    • 23c Saltiel J, Rousseau AD, Thomas B. J. Am. Chem. Soc. 1983; 105: 7631
    • 23d Caldwell RA, Zhou L. J. Am. Chem. Soc. 1994; 116: 2271
  • 24 Sension RJ, Repinec ST, Hochstrasser RM. J. Phys. Chem. 1991; 95: 2946
    • 25a Saltiel J, Megarity ED. J. Am. Chem. Soc. 1972; 94: 2742
    • 25b Arai T, Tokumaru K. Chem. Rev. 1983; 93: 23
    • 26a Lewis FD, Howard DK, Oxman JD, Upthagrove AL, Quillen SL. J. Am. Chem. Soc. 1986; 108: 5964
    • 26b Lewis FD, Oxman JD, Gibson LL, Hampsch HL, Quillen SL. J. Am. Chem. Soc. 1986; 108: 3005
    • 26c Lewis FD, Elbert JE, Upthagrove AL, Hale PD. J. Am. Chem. Soc. 1988; 110: 5191
    • 27a Saltiel J, Hammond GS. J. Am. Chem. Soc. 1963; 85: 2515
    • 27b Hammond GS, Saltiel J. J. Am. Chem. Soc. 1963; 85: 2516
    • 28a Yang NC, Jorgenson MJ. Tetrahedron Lett. 1964; 19: 1203
    • 28b Arai T, Sakuragi H, Tokumaru K. Chem. Lett. 1980; 261
    • 28c Shindo Y, Horie K, Mita I. J. Photochem. 1984; 26: 185
    • 29a Singh K, Staig SJ, Weaver JD. J. Am. Chem. Soc. 2014; 136: 5275
    • 29b Singh A., Fennell C. J., Weaver J. D.; Chem. Sci.; in press; DOI 10 1039/C6SC02422J.
  • 30 Metternich JB, Gilmour R. J. Am. Chem. Soc. 2015; 137: 11254
    • 31a Wald G. J. Gen. Physiol. 1935; 19: 351
    • 31b O’Leary B, Duke B, Eilers JE. Nature 1973; 246: 166
    • 31c Lion F, Rotmans JP, Daemen FJ. M, Bonting SL. Biochim. Biophys. Acta 1975; 384: 283
    • 31d Gai F, Hasson KC, Cooper McDonald J, Anfinrud PA. Science 1998; 279: 1886
    • 31e Rando RR. Chem. Rev. 2001; 101: 1881
    • 31f Strauss O. Physiol. Rev. 2005; 85: 845
    • 31g Redmond TM, Poliakov E, Yu S, Tsai J.-Y, Lu Z, Gentleman S. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 13658
  • 32 Walker AG, Radda GK. Nature 1967; 215: 1483
  • 33 Herkstroeter WG, Farid S. J. Photochem. 1986; 35: 71
  • 34 Le Tadic-Biadatti M.-H, Newcomb M. J. Chem. Soc., Perkin Trans. 2 1996; 1467
  • 35 Anslyn EV, Dougherty DA. Modern Physical Organic Chemistry . University Science Books; Sausalito: 2006
  • 36 Lewis FD, Howard DK, Oxman JD, Upthagrove AL, Quillen SL. J. Am. Chem. Soc. 1986; 108: 5964
    • 37a Edwards KG, Stoker JR. Phytochemistry 1967; 6: 655
    • 37b Matern U, Lüerm P, Kreusch D. Biosynthesis of Coumarins . In Comprehensive Natural Product Chemistry . Vol. 1. Sankawa U. Pergamon; Oxford: 1999
  • 38 Metternich JB, Gilmour R. J. Am. Chem. Soc. 2016; 138: 1040
    • 39a Islam SD. M, Susdorf T, Penzkofer A, Hegemann P. Chem. Phys. 2003; 295: 137
    • 39b Kowalczyk RM, Schleicher E, Bittl R, Weber S. J. Am. Chem. Soc. 2004; 126: 11393
    • 39c Li G, Glusac KD. J. Phys. Chem. A 2008; 112: 4573
    • 39d Quick M, Weigel A, Ernsting NP. J. Phys. Chem. B 2013; 117: 5441