Synlett 2017; 28(09): 1065-1070
DOI: 10.1055/s-0036-1588414
letter
© Georg Thieme Verlag Stuttgart · New York

Catalytic Asymmetric Intramolecular Cyclopropanation of α-Diazo-α-Silyl Acetate

Saori Inoue
Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Email: mnakada@waseda.jp
,
Kotaro Nagatani
Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Email: mnakada@waseda.jp
,
Haruka Tezuka
Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Email: mnakada@waseda.jp
,
Yunosuke Hoshino
Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Email: mnakada@waseda.jp
,
Masahisa Nakada*
Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Email: mnakada@waseda.jp
› Author Affiliations
Further Information

Publication History

Received: 19 December 2016

Accepted after revision: 18 January 2017

Publication Date:
06 February 2017 (online)


Abstract

The catalytic asymmetric intramolecular cyclopropanation (CAIMCP) of α-diazo-α-silyl acetates to form oxabicyclo[3.2.1]hexane, which proceeds with high yields and enantioselectivities, is described. The maximum enantiomeric excess observed was 96% ee and the absolute configuration of the products was elucidated. The counteranion of the Cu(I) catalyst was found to play a crucial role in determining the yields and enantioselectivities, with highly anionic counteranions improving both yields and enantioselectivities. Our previously reported model explains the enantiofacial selectivity of the reacting alkene.

Supporting Information

 
  • References and Notes

  • 1 Chen DY. K, Pouwer RH, Richard J.-A. Chem. Soc. Rev. 2012; 41: 4631-4631
    • 2a Honma M, Sawada T, Fujisawa Y, Utsugi M, Watanabe H, Umino A, Matsumura T, Hagihara T, Takano M, Nakada M. J. Am. Chem. Soc. 2003; 125: 2860-2860
    • 2b Honma M, Nakada M. Tetrahedron Lett. 2003; 44: 9007-9007
    • 2c Sawada T, Nakada M. Adv. Synth. Catal. 2005; 347: 1527-1527
    • 2d Takeda H, Nakada M. Tetrahedron: Asymmetry 2006; 17: 2896-2896
    • 2e Honma M, Takeda H, Takano M, Nakada M. Synlett 2009; 1695-1695
    • 2f Abe M, Saito A, Nakada M. Tetrahedron Lett. 2010; 51: 1298-1298
    • 2g Sawada T, Nakada M. Tetrahedron: Asymmetry 2012; 23: 350-350
    • 3a Takano M, Umino A, Nakada M. Org. Lett. 2004; 6: 4897-4897
    • 3b Miyamoto H, Iwamoto M, Nakada M. Heterocycles 2005; 66: 61-61
    • 3c Takeda H, Watanabe H, Nakada M. Tetrahedron 2006; 62: 8054-8054
    • 3d Watanabe H, Takano M, Umino A, Ito T, Ishikawa H, Nakada M. Org. Lett. 2007; 9: 359-359
    • 3e Honma M, Nakada M. Tetrahedron Lett. 2007; 48: 1541-1541
    • 3f Watanabe H, Nakada M. Tetrahedron Lett. 2008; 49: 1518-1518
    • 3g Watanabe H, Nakada M. J. Am. Chem. Soc. 2008; 130: 1150-1150
    • 3h Watanabe H, Takano M, Nakada M. J. Synth. Org. Chem., Jpn. 2008; 66: 1116-1116
    • 3i Hirai S, Nakada M. Tetrahedron Lett. 2010; 51: 5076-5076
    • 3j Hirai S, Nakada M. Tetrahedron 2011; 67: 518-518
    • 3k Nakada M. Chem. Rec. 2014; 14: 641-641
    • 3l Uetake Y, Uwamori M, Nakada M. J. Org. Chem. 2015; 80: 1735-1735
    • 4a Takeda H, Honma M, Ida R, Sawada T, Nakada M. Synlett 2007; 579-579
    • 4b Ida R, Nakada M. Tetrahedron Lett. 2007; 48: 4855-4855
  • 5 Sawada T, Nakada M. Org. Lett. 2013; 15: 1004-1004
    • 6a Hauser CR, Hance CR. J. Am. Chem. Soc. 1952; 74: 5091-5091
    • 6b Larson GL, Torres LE. Tetrahedron Lett. 1986; 27: 2223-2223
    • 6c Larson GL, Hernandez D, Lopez-Cepero IM, Torres LE. J. Org. Chem. 1985; 50: 5260-5260
  • 7 Müller P, Lacrampe F. Helv. Chim. Acta 2004; 87: 2848-2848
    • 8a Danheiser RL, Miller RF, Brisbois RG, Park SZ. J. Org. Chem. 1990; 55: 1959-1959
    • 8b Danheiser RL, Brisbois RG, Kowalczyk JJ, Miller RF. J. Am. Chem. Soc. 1990; 112: 3093-3093
  • 9 Toma T, Shimokawa J, Fukuyama T. Org. Lett. 2007; 9: 3195-3195
  • 10 CAIMCP of 5a using Cu(CH3CN)4PF6 and ligand L4: Tetrakis(acetonitrile)copper(I)hexafluorophosphate (5.3 mg, 0.0143 mmol) and ligand L4 (9.0 mg, 0.0214 mmol) were dissolved in toluene (14.3 mL) in a dried flask under Ar. The mixture was stirred at room temperature for 1 h and then to the light-green solution was added a solution of toluene azeotroped allyl 2-diazo-2-trimethylsilylacetate 5a (28.4 mg, 0.143 mmol) in toluene (3 × 0.5 mL) by using a cannula. The reaction mixture was stirred at 60 °C for 72 h, then cooled to room temperature, and quenched with aqueous NH4OH solution (2 mL). The aqueous layer was extracted with Et2O (3 × 2 mL), and the combined organic layer was washed with brine (5 mL), dried over Na2SO4, and evaporated. The residue was purified by flash chromatography (hexane/ethyl acetate, 10:1) to afford 6a (25.0 mg, 98%, 94% ee) as a yellow oil. Rf = 0.20 (hexane/ethyl acetate, 4:1). The ee was determined by GC (capillary column RT-γ-DEXsm, SUPELCO, 30 m×0.25 mm×0.25 μm) at 150 °C constant. Retention time: 3.5 min for ent-6a, 3.8 min for 6a; [α]D 21 +58 (c 0.63, 94% ee, CHCl3). The spectroscopic data are consistent with the reported data, see: Alt M, Maas G. Chem. Ber. 1994; 127: 1537-1537

    • The difference between of the observed and reported absolute values of specific rotations of 6ac could be attributed to the different concentration of samples and/or to experimental error
    • 11a Hasegawa D, Uchiro H, Kobayashi S. Tetrahedron Lett. 2002; 43: 7185-7185
    • 11b Fox ME, Li C, Marino JP. Jr, Overman LE. J. Am. Chem. Soc. 1999; 121: 5467-5467
    • 11c Jakovac IJ, Goodbrand HB, Lok KP, Jones JB. J. Am. Chem. Soc. 1982; 104: 4659-4659
  • 12 Evans DA, Miller SJ, Lectka T, Matt P. J. Am. Chem. Soc. 1999; 121: 7559-7559