Synthesis 2016; 48(20): 3429-3448
DOI: 10.1055/s-0035-1562552
review
© Georg Thieme Verlag Stuttgart · New York

Synthetic Approaches to Coronafacic Acid, Coronamic Acid, and Coronatine

Mairi M. Littleson
a   Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK   Email: allan.watson.100@strath.ac.uk
,
Claire J. Russell
b   Syngenta, International Research Centre, Jealott’s Hill, Bracknell, West Berkshire, RG42 6EY, UK
,
Elizabeth C. Frye
b   Syngenta, International Research Centre, Jealott’s Hill, Bracknell, West Berkshire, RG42 6EY, UK
,
Kenneth B. Ling
b   Syngenta, International Research Centre, Jealott’s Hill, Bracknell, West Berkshire, RG42 6EY, UK
,
Craig Jamieson
a   Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK   Email: allan.watson.100@strath.ac.uk
,
Allan J. B. Watson*
a   Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK   Email: allan.watson.100@strath.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 21 April 2016

Accepted after revision: 25 May 2016

Publication Date:
15 August 2016 (online)


Abstract

The phytotoxin coronatine (COR) is a functional mimic of the active plant hormone (+)-7-iso-jasmonoyl-l-isoleucine (JA-IIe), which regulates stress responses. Structurally, COR is composed of a core unit, coronafacic acid (CFA), which is connected to coronamic acid (CMA), via an amide linkage. COR has been found to induce a range of biological activity in plants and based on its biological profile, COR, as well as CFA, and CMA are attractive starting points for agrochemical discovery, resulting in numerous total synthesis efforts. This review will discuss the synthetic approaches towards CFA, CMA and, ultimately COR, to date.

1 Introduction

2 Total Synthesis of Coronafacic Acid (CFA, 4)

2.1 Mapping Synthetic Strategies

2.2 Intermolecular Diels–Alder Approaches

2.3 Intramolecular Diels–Alder Approaches

2.4 Conjugate Addition Approaches

2.5 Haller–Bauer Approaches

2.6 Intramolecular Cyclisation Approaches

2.7 Oxy-Cope Approaches

3 Total Synthesis of Coronamic Acid (CMA, 5)

3.1 Mapping Synthetic Strategies

3.2 Final Installation of C1

3.3 Final Installation of C2

3.4 Final Installation of C3

4 Total Synthesis of Coronatine (COR, 1)

5 Conclusions

 
  • References

  • 1 Du M, Li X, Tian X, Duan L, Zhang M, Tan W, Xu D, Li Z. PLoS One 2014; 9: e97652
  • 2 Ichihara A, Shiraishi K, Sato H, Sakamura S, Nishiyama K, Sakai R, Furusaki A, Matsumoto T. J. Am. Chem. Soc. 1977; 99: 636
  • 3 Ichihara A, Shiraishi K, Sakamura S, Furusaki A, Hashiba N, Matsumoto T. Tetrahedron Lett. 1979; 365
  • 4 Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R. Nat. Chem. Biol. 2009; 5: 344
  • 5 Monte I, Hamberg M, Chini A, Gimenez-Ibanez S, García-Casado G, Porzel A, Pazos F, Boter M, Solano R. Nat. Chem. Biol. 2014; 10: 671
  • 6 Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F, Sharon M, Browse J, He SY, Rizo J, Howe G, Zheng N. Nature 2010; 468: 400
  • 7 Creelman R, Mullet JE. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997; 48: 355
  • 8 Krumm T, Bandemer K, Boland W. FEBS Lett. 1995; 377: 523
  • 9 Yi H, Preuss ML, Jez JM. Nat. Chem. Biol. 2009; 5: 273
  • 10 Rao Uppalapati S, Ayoubi P, Weng H, Palmer DA, Mitchell RE, Jones W, Bender CL. Plant J. 2005; 42: 201
  • 11 Ichihara A, Sakamura S. Toxicon 1983; 187
  • 12 Sakai R. Ann. Phytopathol. Soc. Jpn. 1980; 46: 499
  • 13 Feys BJ. F, Benedetti CE, Penfold CN, Turner JG. Plant Cell 1994; 6: 751
  • 14 Kenyon JS, Turner JG. Plant Physiol. 1992; 100: 219
  • 15 Haider G, von Schrader T, Füsslein M, Blechert S, Kutchan TM. Biol. Chem. 2000; 381: 741
  • 16 Schüler G, Mithöfer A, Baldwin IT, Berger S, Ebel J, Santos JG, Herrmann G, Hölscher D, Kramell R, Kutchan TM, Maucher H, Schneider B, Stenzel I, Wasternack C, Boland W. FEBS Lett. 2004; 563: 17
  • 17 Okada M, Egoshi S, Ueda M. Biosci. Biotechnol. Biochem. 2010; 74: 2092
  • 18 Gu M, Yan J, Bia Z, Chen YT, Lu W, Tang J, Duan L, Xie D, Nan FJ. Bioorg. Med. Chem. 2010; 18: 3012
  • 19 Jones W, Harvey D, Mitchell R. Food Agric. Immunol. 2002; 14: 301
  • 20 Mithöfer A, Maitrejean M, Boland W. J. Plant Growth Regul. 2005; 23: 170
  • 21 Blechert S, Bockelmann C, Füßlein M, Schrader TV, Stelmach B, Niesel U, Weiler EW. Planta 1999; 207: 470
  • 22 Kosaki Y, Ogawa N, Wang Q, Kobayashi Y. Org. Lett. 2011; 13: 4232
  • 23 Ichihara A, Kinura R, Moriyasu K, Sakamura S. Tetrahedron Lett. 1977; 4331
  • 24 Liu HJ, Llinas-Brunet M. Can. J. Chem. 1984; 62: 1747
  • 25 Sundberg RJ, Bukowick PA, Holcombe FO. J. Org. Chem. 1967; 32: 2938
  • 26 Okada M, Ito S, Matsubara A, Iwakura I, Egoshi S, Ueda M. Org. Biomol. Chem. 2009; 7: 3065
  • 27 Hale KJ, Cai J. Tetrahedron Lett. 1996; 37: 4233
  • 28 Arnold LA, Naasz R, Minnaard AJ, Feringa BL. J. Org. Chem. 2002; 67: 7244
  • 29 Ichihara A, Kimura R, Yamada S, Sakamura S. J. Am. Chem. Soc. 1980; 102: 6353
  • 30 Brannock KC, Bell A, Burpitt RD, Kelly CA. J. Org. Chem. 1964; 29: 801
  • 31 Jung ME, Halweg KM. Tetrahedron Lett. 1981; 22: 2735
  • 32 Moreau B, Ginisty M, Alberico D, Charette AB. J. Org. Chem. 2007; 72: 1235
  • 33 Inoue T, Liu J, Buske DC, Abiko A. J. Org. Chem. 2002; 67: 5250
  • 34 Yates P, Bhamare NK, Granger T, Macas TS. Can. J. Chem. 1993; 71: 995
  • 35 Nara S, Toshima H, Ichihara A. Tetrahedron Lett. 1996; 37: 6745
  • 36 Nara S, Toshima H, Ichihara A. Tetrahedron 1997; 53: 9509
  • 37 Arai T, Sasai H, Yamaguchi K, Shibasaki M. J. Am. Chem. Soc. 1998; 120: 441
  • 38 Arai T, Yamada YM. A, Yamamoto N, Sasai H, Shibasaki M. Chem. Eur. J. 1996; 2: 1368
  • 39 Haller A, Bauer E. Compt. Rend. 1908; 147: 824
  • 40 Mehta G, Praveen M. J. Chem. Soc., Chem. Commun. 1993; 1573
  • 41 Chapman NB, Key JM, Toyne KJ. J. Org. Chem. 1970; 35: 3860
  • 42 Schuda PF, Ammon HL, Heimann MR, Bhattacharjee S. J. Org. Chem. 1982; 47: 3434
  • 43 Mehta G, Reddy DS. Tetrahedron Lett. 1999; 40: 991
  • 44 Mehta G, Reddy DS. J. Chem. Soc., Perkin Trans. 1 2001; 1153
  • 45 Sono M, Hashimoto A, Nakashima K, Tori M. Tetrahedron Lett. 2000; 41: 5115
  • 46 Tsuji J. Pure Appl. Chem. 1981; 53: 2371
  • 47 Hoelder S, Blechert S. Synlett 1996; 505
  • 48 Kataoka H, Yamada T, Goto K, Tsuji J. Tetrahedron 1987; 43: 4107
  • 49 Nakayama M, Ohira S, Okamura Y, Soga S. Chem. Lett. 1981; 10: 731
  • 50 Szeja W. Synthesis 1979; 821
  • 51 Bell HM, Vanderslice CW, Spehar A. J. Org. Chem. 1969; 34: 3923
  • 52 Ohira S. Bull. Chem. Soc. Jpn. 1984; 57: 1902
  • 53 Nakayama M, Ohira S. Agric. Biol. Chem. 1983; 47: 1689
  • 54 Taber DF, Saleh SA, Korsmeyer RW. J. Org. Chem. 1980; 45: 4699
  • 55 Osorio-Lozada A, Olivo HF. J. Org. Chem. 2009; 74: 1360
  • 56 Kinouchi W, Kosaki Y, Kobayashi Y. Tetrahedron Lett. 2013; 54: 7017
  • 57 Taber DF, Sheth RB, Tian W. J. Org. Chem. 2009; 74: 2433
  • 58 Handa M, Takata A, Nakao T, Kasuga K, Mikuriya M, Kotera T. Chem. Lett. 1992; 21: 2085
  • 59 Jung ME, Hudspeth JP. J. Am. Chem. Soc. 1980; 102: 2463
  • 60 Jung ME, Hudspeth JP. J. Am. Chem. Soc. 1977; 99: 5508
  • 61 Adams LA, Aggarwal VK, Bonnert RV, Bressel B, Cox RJ, Shepherd J, De Vicente J, Walter M, Whittingham WG, Winn CL. J. Org. Chem. 2003; 68: 9433
  • 62 Ichihara A, Shiraishi K, Sakamura S, Nishiyama K, Sakai R. Tetrahedron Lett. 1977; 269
  • 63 Murdock KC, Angier RB. J. Org. Chem. 1962; 27: 2395
  • 64 Toshima H, Ichihara A. Biosci. Biotechnol. Biochem. 1995; 59: 497
  • 65 Gaucher A, Ollivier J, Marguerite J, Paugam R, Salaün J. Can. J. Chem. 1994; 72: 1312
  • 66 Groth U, Halfbrodt W, Schöllkopf U. Liebigs Ann. Chem. 1992; 351
  • 67 Quinkert G, Schwartz U, Stark H, Weber WD, Baier H, Adam F, Duerner G. Angew. Chem. 1980; 92: 1062
  • 68 Gaucher A, Dorizon P, Ollivier J, Salaün J. Tetrahedron Lett. 1995; 36: 2979
  • 69 Baldwin JE, Adlington RM, Rawlings BJ. Tetrahedron Lett. 1985; 26: 481
  • 70 Baldwin JE, Adlington RM, Rawlings BJ, Jones RH. Tetrahedron Lett. 1985; 26: 485
  • 71 Huther N, McGrail PT, Parsons AF. Eur. J. Org. Chem. 2004; 1740
  • 72 Charette AB, Côté B. J. Am. Chem. Soc. 1995; 117: 12721
  • 73 Charette AB, Côté B. J. Org. Chem. 1993; 58: 933
  • 74 Charette AB, Côté B. Tetrahedron Lett. 1993; 34: 6833
  • 75 Abiko A, Roberts JC, Takemasa T, Masamune S. Tetrahedron Lett. 1986; 27: 4537
  • 76 Williams RM, Fegley GJ. J. Am. Chem. Soc. 1991; 113: 8796
  • 77 Sinclair PJ, Zhai D, Reibenspies J, Williams RM. J. Am. Chem. Soc. 1986; 108: 1103
  • 78 Suzuki M, Gooch EE, Stammer CH. Tetrahedron Lett. 1983; 24: 3839
  • 79 Aggarwal VK, de Vicente J, Bonnert RV. Org. Lett. 2001; 3: 2785
  • 80 Yamazaki S, Kataoka H, Yamabe S. J. Org. Chem. 1999; 64: 2367
  • 81 Kordes M, Winsel H, de Meijere A. Eur. J. Org. Chem. 2000; 3235
  • 82 Kozyrkov YY, Pukin A, Kulinkovich OG, Ollivier J, Salaün J. Tetrahedron Lett. 2000; 41: 6399
  • 83 Atlan V, Racouchot S, Rubin M, Bremer C, Ollivier J, de Meijere A, Salaün J. Tetrahedron: Asymmetry 1998; 9: 1131
  • 84 Toshima H, Nara S, Ichihara A. Biosci. Biotechnol. Biochem. 1997; 61: 752