Synthesis 2016; 48(01): 115-121
DOI: 10.1055/s-0035-1560705
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Aliphatic Azides by Photoinduced C(sp3)–H Azidation

Shin Kamijo*
a   Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan   Email: kamijo@yamaguchi-u.ac.jp
,
Mizuki Watanabe
a   Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan   Email: kamijo@yamaguchi-u.ac.jp
,
Kaori Kamijo
a   Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan   Email: kamijo@yamaguchi-u.ac.jp
,
Keisuke Tao
a   Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan   Email: kamijo@yamaguchi-u.ac.jp
,
Toshihiro Murafuji
b   Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan
› Author Affiliations
Further Information

Publication History

Received: 31 August 2015

Accepted after revision: 17 September 2015

Publication Date:
20 October 2015 (online)


Abstract

A photoinduced synthesis of aliphatic azides was achieved in a single step starting from the parent cyclic alkanes, as well as from tetrahydrofuran and pyrrolidine derivatives. The reaction proceeds via direct azidation of C(sp3)–H bonds in the presence of 4-benzoylpyridine under photoirradiation conditions utilizing tosyl azide as the azide source. The chemoselective C–H mono-azidation at room temperature and the formation of azide compounds in spite of their potential photolability are the key features of the present transformation.

Supporting Information

 
  • References

  • 1 For a recent overview on the chemistry of organic azides, see: Organic Azides: Syntheses and Applications . Bräse S, Banert K. Wiley; Chichester: 2010

    • For recent reviews on azides in organic synthesis, see:
    • 2a Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 2b Minozzi M, Nanni D, Spagnolo P. Chem. Eur. J. 2009; 15: 7830
    • 2c Chiba S. Synlett 2012; 23: 21
    • 2d Tanimoto H, Kakiuchi K. Nat. Prod. Commun. 2013; 8: 1021

      For original reports on the Cu-catalyzed alkyne-azide cycloaddition (CuAAC, click reaction), see:
    • 3a Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 3b Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057

      For representative reviews on the click reaction of CuAAC and related transformations, see:
    • 4a Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
    • 4b Gil MV, Arévalo MJ, López Ó. Synthesis 2007; 1589
    • 4c Baskin JM, Bertozzi CR. Aldrichimica Acta 2010; 43: 15
    • 4d Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
    • 5a Sandler SR, Karo W. Organic Functional Group Preparations . Vol. II. Chap. 13 Academic Press; New York: 1971
    • 5b Ju Y, Kumar D, Varma RS. J. Org. Chem. 2006; 71: 6697
  • 6 Kitamura M, Koga T, Yano M, Okauchi T. Synlett 2012; 23: 1335
  • 7 Thompson AS, Hartner FW, Grabowski EJ. J. Org. Synth. 1998; 75: 31
  • 8 Corey EJ, Link JO. J. Am. Chem. Soc. 1992; 114: 1906
  • 9 For a recent report on the acid-catalyzed azidation by substituting hydroxy groups of tertiary alcohols, see: Dryzhakov M, Hellal M, Wolf E, Falk FC, Moran J. J. Am. Chem. Soc. 2015; 137: 9555
    • 10a Viuf C, Bols M. Angew. Chem. Int. Ed. 2001; 40: 623
    • 10b Marinescu L, Thinggaard J, Thomsen IB, Bols M. J. Org. Chem. 2003; 68: 9453
    • 11a Krasutsky AP, Kuehl CJ, Zhdankin VV. Synlett 1995; 1081
    • 11b Zhdankin VV, Krasutsky AP, Kuehl CJ, Simonsen AJ, Woodward JK, Mismash B, Bolz JT. J. Am. Chem. Soc. 1996; 118: 5192

    • For a related report, see:
    • 11c Magnus P, Lacour J, Weber W. J. Am. Chem. Soc. 1993; 115: 9347
  • 12 Sharma A, Hartwig JF. Nature 2015; 517: 600
  • 13 Huang X, Bergsten TM, Groves JT. J. Am. Chem. Soc. 2015; 137: 5300

    • For related examples from our group, see:
    • 14a Kamijo S, Hoshikawa T, Inoue M. Tetrahedron Lett. 2010; 51: 872
    • 14b Kamijo S, Hoshikawa T, Inoue M. Tetrahedron Lett. 2011; 52: 2885
    • 14c Kamijo S, Hoshikawa T, Inoue M. Org. Lett. 2011; 13: 5928
    • 14d Hoshikawa T, Kamijo S, Inoue M. Org. Biomol. Chem. 2013; 11: 164
    • 14e Hoshikawa T, Yoshioka S, Kamijo S, Inoue M. Synthesis 2013; 45: 874
    • 14f Amaoka Y, Nagatomo M, Watanabe M, Tao K, Kamijo S, Inoue M. Chem. Sci. 2014; 5: 4339
    • 14g Kamijo S, Hirota M, Tao K, Watanabe M, Murafuji T. Tetrahedron Lett. 2014; 55: 5551
    • 14h Kamijo S, Tao K, Takao G, Murooka H, Murafuji T. Tetrahedron Lett. 2015; 56: 1904
    • 14i Kamijo S, Tao K, Takao G, Tonoda H, Murafuji T. Org. Lett. 2015; 17: 3326

      For recent related transformations from other groups, see:
    • 15a Kee CW, Chin KF, Wong MW, Tan C.-H. Chem. Commun. 2014; 50: 8211
    • 15b Xia J.-B, Zhu C, Chen C. Chem. Commun. 2014; 50: 11701
    • 15c Cantillo D, de Frutos O, Rincón JA, Mateos C, Kappe CO. J. Org. Chem. 2014; 79: 8486
    • 15d Xia J.-B, Zhu C, Chen C. J. Am. Chem. Soc. 2013; 135: 17494
    • 15e Hoshikawa T, Inoue M. Chem. Sci. 2013; 4: 3118
  • 16 For photochemical generation of nitrenes from azides, see: Albini A, Fagnoni M. Photochemically-Generated Intermediates in Synthesis . Wiley; New Jersey: 2013: 313-322
  • 17 Hosoya T, Hiramatsu T, Ikemoto T, Nakanishi M, Aoyama H, Hosoya A, Iwata T, Maruyama K, Endo M, Suzuki M. Org. Biomol. Chem. 2004; 2: 637
  • 18 Appleton DC, Bull DC, McKenna J, McKenna JM, Walley AR. J. Chem. Soc., Perkin Trans. 2 1980; 385

    • For examples of radical reactions using sulfonyl azides as an azide source, see:
    • 19a Ollivier C, Renaud P. J. Am. Chem. Soc. 2000; 122: 6496
    • 19b Waser J, Nambu H, Carreira EM. J. Am. Chem. Soc. 2005; 127: 8294
    • 19c Weidner K, Giroult A, Panchaud P, Renaud P. J. Am. Chem. Soc. 2010; 132: 17511
    • 19d Kapat A, König A, Montermini F, Renaud P. J. Am. Chem. Soc. 2011; 133: 13890
    • 19e Nyfeler E, Renaud P. Org. Lett. 2008; 10: 985
    • 19f Höfling SB, Heinrich MR. Synthesis 2011; 173
    • 19g Lapointe G, Kapat A, Weidner K, Renaud P. Pure Appl. Chem. 2012; 84: 1633
    • 19h Liu C, Wang X, Li Z, Cui L, Li C. J. Am. Chem. Soc. 2015; 137: 9820
  • 20 Other sulfonyl azides such as MeSO2N3 and Me2NSO2N3 gave the desired product 2a in lower yields whereas no reaction took place with (PhO)2PON3, 4-MeOC6H4OCON3, and Bu3SnN3 as an azide source.
  • 21 No decomposition of the azidoambroxide 2d was observed in benzene with LED light irradiation for 3 h; however, addition of 4-BzPy to the solution induced gradual degradation of 2d, see: Klima RF, Gudmundsdóttir AD. J. Photochem. Photobiol. A 2004; 162: 239
  • 22 Kotsuki H, Ohishi T, Araki T. Tetrahedron Lett. 1997; 38: 2129
  • 23 Yoshida S, Hatakeyama Y, Johmoto K, Uekusa H, Hosoya T. J. Am. Chem. Soc. 2014; 136: 13590
  • 24 We could not obtain a clear result on the azidation of trans-decalin since its reactivity was far lower than that of cis-decalin (1f).