Synlett 2015; 26(12): 1649-1664
DOI: 10.1055/s-0034-1380462
account
© Georg Thieme Verlag Stuttgart · New York

C(sp3)–H versus C(sp3)–C(sp) in Activation of Propargylic Amines under Transition-Metal Catalysis

Hiroyuki Nakamura*
Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan   Email: hiro@res.titech.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 01 February 2015

Accepted after revision: 23 February 2015

Publication Date:
04 May 2015 (online)


Abstract

Transition-metal-catalyzed C–H and C–C bond activation procedures have attracted significant interest as environmentally friendly processes for organic synthesis. This account summarizes transition-metal-catalyzed transformations of propargylic amines through C(sp3)–H and C(sp3)–C(sp) activation, including hydrogen transfer, deacetylenative homocoupling, fragment exchange, and redox cross-dehydrogenative coupling (CDC). The generation of iminium intermediates is essential for the current transformations based on propargylic amines.

1 Introduction

2 Synthesis of Allenes from Propargylic Amines through Palladium-Catalyzed Hydrogen-Transfer Reactions

2.1 Propargylic Amines as Allenyl Anion Equivalents

2.2 Synthesis of Allenyl Carbinols

2.3 Synthesis of Heterocyclic Allenes

2.4 Mechanistic Study

2.5 One-Pot Synthesis of Allenes from Aryl Halides

3 Substitution Reactions of Propargylic Amines through Copper(I)-Catalyzed C(sp)–C(sp3) Bond Activation

3.1 Substitution Reactions of Propargylic Amines with Secondary Amines

3.2 Substitution Reactions of Propargylic Amines with 1-Alkynes

3.3 Deacetylenative Coupling with Various Propargylic Amines

4 Zinc(II)-Catalyzed Redox Cross-Dehydrogenative Coupling of Propargylic Amines and Terminal Alkynes

5 Conclusion

 
  • References

  • 1 Dyker G. Angew. Chem. Int. Ed. 1999; 38: 1698
  • 2 Jia CG, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
  • 3 Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002; 102: 1731
  • 4 Chen X, Engle KM, Wang DH, Yu JQ. Angew. Chem. Int. Ed. 2009; 48: 5094
  • 5 Li CJ. Acc. Chem. Res. 2009; 42: 335
  • 6 Murahashi SI, Zhang D. Chem. Soc. Rev. 2008; 37: 1490
  • 7 Murahashi SI, Hirano T, Yano T. J. Am. Chem. Soc. 1978; 100: 348
  • 8 Li ZP, Bohle DS, Li CJ. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
  • 9 Crabbé P, Fillion H, André D, Luche J.-L. J. Chem. Soc., Chem. Commun. 1979; 859
  • 10 Gommermann N, Koradin X, Polborn K, Knochel P. Angew Chem. Int. Ed. 2003; 42: 5763
  • 11 Peshkov VA, Pereshivko OP, Van der Eycken EV. Chem. Soc. Rev. 2012; 41: 3790
  • 12 Nakamura H, Kamakura T, Ishikura M, Biellmann JF. J. Am. Chem. Soc. 2004; 126: 5958
  • 13 Kim Y, Nakamura H. Chem. Eur. J. 2011; 17: 12561
  • 14 Sugiishi T, Kimura A, Nakamura H. J. Am. Chem. Soc. 2010; 132: 5332
  • 15 Sugiishi T, Nakamura H. J. Am. Chem. Soc. 2012; 134: 2504
  • 16 Nakamura H, Tashiro S, Kamakura T. Tetrahedron Lett. 2005; 46: 8333
  • 17 Nakamura H, Ishikura M, Sugiishi T, Kamakura T, Biellmann JF. Org. Biomol. Chem. 2008; 6: 1471
  • 18 Nakamura H, Onagi S, Kamakura T. J. Org. Chem. 2005; 70: 2357
  • 19 Fry D, Kraker A, McMichael A, Ambroso L, Nelson J, Leopold W, Connors R, Bridges A. Science 1994; 265: 1093
  • 20 Linardou H, Dahabreh IJ, Bafaloukos D, Kosmidis P, Murray S. Nat. Rev. Clin. Oncol. 2009; 6: 352
  • 21 Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B. N. Engl. J. Med. 2005; 352: 786
  • 22 Ban HS, Onagi S, Uno M, Nabeyama W, Nakamura H. ChemMedChem 2008; 3: 1094
  • 23 Ban HS, Tanaka Y, Nabeyama W, Hatori M, Nakamura H. Bioorg. Med. Chem. 2010; 18: 870
  • 24 Zeni G, Larock RC. Chem. Rev. 2004; 104: 2285
  • 25 Carvalho MF. N. N, Galvao AM, Pombeiro AJ. L, Cermak J, Sabata S, Vojtisek P, Podlaha J. J. Organomet. Chem. 2000; 598: 318
  • 26 Murahashi S, Watanabe T. J. Am. Chem. Soc. 1979; 101: 7429
  • 27 Nakamura H, Kamakura T, Onagi S. Org. Lett. 2006; 8: 2095