Synthesis 2013; 45(18): 2499-2511
DOI: 10.1055/s-0033-1339679
short review
© Georg Thieme Verlag Stuttgart · New York

Oxidative Rearrangements with Hypervalent Iodine Reagents

Fateh V. Singh
School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK   Fax: +44(29)20876968   Email: wirth@cf.ac.uk
,
Thomas Wirth*
School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK   Fax: +44(29)20876968   Email: wirth@cf.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 05 July 2013

Accepted after revision: 07 August 2013

Publication Date:
15 August 2013 (online)


Abstract

Hypervalent iodine chemistry is used as an important tool in synthetic and natural product chemistry. A number of hypervalent iodine reagents can be used to generate the functionalizations on various scaffolds by several chemical approaches including oxidation reactions, oxidative cyclization reactions, and rearrangements. Recently, these reagents have been employed to develop a variety of oxidative rearrangements. In this review article, various aspects of recently developed oxidative rearrangements using iodine(III) and iodine(V) reagents are described.

1 Introduction

2 Oxidative Rearrangements

2.1 1,2-Aryl Group Migrations

2.2 Hofmann Rearrangements

2.2.1 Hofmann Rearrangements without Cyclizations

2.2.2 Hofmann Rearrangements with Cyclizations

2.3 Ring Contractions

2.4 Ring Expansions

2.5 Rearrangement of Tertiary Alcohols

2.6 Wagner–Meerwein Rearrangements

2.7 Domino Reactions

3 Summary

 
  • References

    • 1a Wirth T. Angew. Chem. Int. Ed. 2001; 40: 2812 ; Angew. Chem. 2001, 113, 2893
    • 1b Zhdankin VV. Chem. Rev. 2002; 102: 2523
    • 1c Wirth T In Organic Synthesis Highlights V . Schmalz H.-G, Wirth T. Wiley-VCH; Weinheim: 2003: 144
    • 1d Topics in Current Chemistry . Vol. 224. Wirth T. Springer; Berlin: 2003
    • 1e Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656 ; Angew. Chem. 2005, 117, 3722
    • 1f Moriarty RM. J. Org. Chem. 2005; 70: 2893
    • 1g Ladziata U, Zhdankin VV. Synlett 2007; 527
    • 1h Yusubov MS, Zhdankin VV. Curr. Org. Synth. 2012; 9: 247
    • 1i Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052 ; Angew. Chem. 2009, 121, 9214
    • 2a Uyanik M, Ishihara K. Chem. Commun. 2009; 45: 2086
    • 2b Satam V, Harad A, Rajule R, Pati H. Tetrahedron 2010; 66: 7659
    • 2c Liang H, Ciufolini MA. Tetrahedron 2010; 66: 5884
    • 4a Zhdankin VV. Chem. Rev. 2008; 108: 5299
    • 4b Zhdankin VV. ARKIVOC 2009; (i): 1
  • 5 Yusubov MS, Zholobova GA, Filimonova IL, Chi K.-W. Russ. Chem. Bull. Int. Ed. 2004; 53: 1735
  • 6 Boye AC, Meyer D, Ingison CK, French AN, Wirth T. Org. Lett. 2003; 5: 2157
  • 7 Singh FV, Rehbein J, Wirth T. ChemistryOpen 2012; 1: 245
  • 8 Liu L, Lu H, Wang H, Yang C, Zhang X, Zhang-Negrerie D, Du Y, Zhao K. Org. Lett. 2013; 15: 2906
  • 9 Farid U, Malmedy F, Claveau R, Albers L, Wirth T. Angew. Chem. Int. Ed. 2013; 52: 7018 ; Angew. Chem. 2013, 125, 7156
  • 10 Moriarty RM, Enache LA, Zhao L, Gilardi R, Mattson MV, Prakash O. J. Med. Chem. 1998; 41: 468
  • 11 Zhang L.-H, Chung JC, Costello TD, Valvis I, Ma P, Kauffman S, Ward R. J. Org. Chem. 1997; 62: 2466
  • 12 Andruszkiewicz R, Gronek E, Haluszczak J. Synth. Commun. 2008; 38: 905
    • 13a Zhang L.-H, Kauffman GS, Pesti JA, Yin J. J. Org. Chem. 1997; 62: 6918
    • 13b Berkessel A, Glaubitz K, Lex J. Eur. J. Org. Chem. 2002; 2948
    • 14a Loudon GM, Radhakrishna AS, Almond MR, Blodgett JK, Boutin RH. J. Org. Chem. 1984; 49: 4272
    • 14b Boutin RH, Loudon GM. J. Org. Chem. 1984; 49: 4277
    • 15a Lazbin IM, Koser GF. J. Org. Chem. 1986; 51: 2669
    • 15b Lazbin IM, Koser GF. J. Org. Chem. 1987; 52: 476
    • 15c Vasudevan A, Koser GF. J. Org. Chem. 1988; 53: 5158
    • 15d Moriarty RM, Chany II CJ, Vaid RK, Prakash O, Tuladhar SM. J. Org. Chem. 1993; 58: 2478
    • 15e Della EW, Head NJ. J. Org. Chem. 1995; 60: 5303
    • 15f Ramsden CA, Rose HL. J. Chem. Soc., Perkin Trans. 1 1997; 2319
    • 15g Davis MC, Stasko D, Chapman RD. Synth. Commun. 2003; 33: 2677
    • 15h Tohma H, Maruyama A, Maeda A, Maegawa T, Dohi T, Shiro M, Morita T, Kita Y. Angew. Chem. Int. Ed. 2004; 43: 3595 ; Angew. Chem. 2004, 116, 3679
    • 15i Andruszkiewicz R, Rozkiewicz D. Synth. Commun. 2004; 34: 1049
    • 15j Yamada K, Urakawa H, Oku H, Katakai R. J. Pept. Res. 2004; 64: 43
    • 15k Liu SJ, Zhang JZ, Tian GR, Liu P. Synth. Commun. 2005; 36: 823
    • 15l Yusubov MS, Funk TV, Chi K.-W, Cha E.-H, Kim GH, Kirschning A, Zhdankin VV. J. Org. Chem. 2008; 73: 295
  • 16 Landsberg D, Kalesse M. Synlett 2010; 1104
  • 17 Yoshimura A, Luedtke MW, Zhdankin VV. J. Org. Chem. 2012; 77: 2087
  • 18 Bhalerao DS, Mahajan US, Chaudhari KH, Akamanchi KG. J. Org. Chem. 2007; 72: 662
  • 19 Bellale EV, Bhalerao DS, Akamanchi KG. J. Org. Chem. 2008; 73: 9473
    • 20a Yusubov MS, Nemykin VN, Zhdankin VV. Tetrahedron 2010; 66: 5745
    • 20b Yusubov MS, Zagulyaeva AA, Zhdankin VV. Chem. Eur. J. 2009; 15: 11091
  • 21 Zagulyaeva AA, Banek CT, Yusubov MS, Zhdankin VV. Org. Lett. 2010; 12: 4644
  • 22 Moriyama K, Ishida K, Togo H. Org. Lett. 2012; 14: 946
    • 23a Dohi T, Kita Y. Chem. Commun. 2009; 2073
    • 23b Yusubov MS, Zhdankin VV. Mendeleev Commun. 2010; 20: 185
    • 23c Richardson RD, Wirth T. Angew. Chem. Int. Ed. 2006; 45: 4402 ; Angew. Chem. 2006, 118, 4510
  • 24 Miyamoto K, Sakai Y, Goda S, Ochiai M. Chem. Commun. 2012; 48: 982
  • 25 Yoshimura A, Middleton KR, Luedtke MW, Zhu C, Zhdankin VV. J. Org. Chem. 2012; 77: 11399
    • 26a Yu C, Jiang Y, Liu B, Hu L. Tetrahedron Lett. 2001; 42: 1449
    • 26b Hernandez E, Velez JM, Vlaar CP. Tetrahedron Lett. 2007; 48: 8972
  • 27 Angelici G, Contaldi S, Green SL, Tomasini C. Org. Biomol. Chem. 2008; 6: 1849
  • 28 Okamoto N, Miwa Y, Minami H, Takeda K, Yanada R. Angew. Chem. Int. Ed. 2009; 48: 9693 ; Angew. Chem. 2009, 121, 9873
  • 29 Prakash O, Batra H, Kaur H, Sharma PK, Sharma V, Singh SP, Moriarty RM. Synthesis 2001; 541
    • 30a Moriarty RM, Prakash I, Musallam HA. Tetrahedron Lett. 1984; 25: 5867
    • 30b Daum SJ. Tetrahedron Lett. 1984; 25: 4725
    • 30c Zefirov NS, Caple R, Palyulin VA, Berglund B, Tykvinskii R, Zhdankin VV, Kozmin AS. Bull. Acad. Sci. USSR Div. Chem. Sci. 1988; 37: 1289
    • 30d Prakash O, Tanwar MP. Bull. Chem. Soc. Jpn. 1995; 68: 1168
    • 30e Moriarty RM, Prakash O, Duncan MP, Vaid RK, Rani N. J. Chem. Res., Synop. 1996; 432
    • 30f Moriarty RM, Enache LA, Zhao L, Gilardi R, Mattson MV, Prakash O. J. Med. Chem. 1998; 41: 468
    • 30g Varma RS, Kumar D. Synthesis 1999; 1288
    • 30h Yusubov MS, Zholobova GA. Russ. J. Org. Chem. 2001; 37: 1179
    • 30i Juhász L, Szilágyi L, Antus S, Visy J, Zsila F, Simonyi M. Tetrahedron 2002; 58: 4261
  • 31 Silva LF. Molecules 2006; 11: 421
  • 32 Justik MW. Tetrahedron Lett. 2007; 48: 3003
  • 33 Silva LF, Siqueira FA, Pedrozo EC, Vieira FY. M, Doriguetto AC. Org. Lett. 2007; 9: 1433
  • 34 Kameyama M, Siqueira FA, Garcia-Mijares M, Silva LF, Silva MT. A. Molecules 2011; 16: 9421
  • 35 Siqueira FA, Ishikawa EE, Fogaca A, Faccio AT, Carneiro VM. T, Soares RR. S, Utaka A, Tebeka IR. M, Bielawski M, Olofsson B, Silva LF. J. Braz. Chem. Soc. 2011; 22: 1795
  • 36 Ahamad A, Silva LF. Synthesis 2012; 44: 3671
  • 37 Iglesias-Arteaga A, Velazquez-Huerta GA. Tetrahedron Lett. 2005; 46: 6897
  • 38 Justik MW, Koser GF. Molecules 2005; 10: 217
  • 39 Abo T, Sawaguchi M, Senboku H, Hara S. Molecules 2005; 10: 183
  • 40 Silva LF, Vasconcelos RS, Nogueira MA. Org. Lett. 2008; 10: 1017
  • 41 Shibuya M, Ito S, Takahashi M, Iwabuchi Y. Org. Lett. 2004; 6: 4303
  • 42 Vatele J.-M. Synlett 2008; 1785
  • 43 Uyanik M, Fukatsu R, Ishihara K. Org. Lett. 2009; 11: 3470
  • 44 Guerard KC, Chapelle C, Giroux M.-A, Sabot C, Beaulieu M.-A, Achache N, Canesi S. Org. Lett. 2009; 11: 4756
  • 45 Guerard KC, Guerinot A, Bouchard-Aubin C, Menard M.-A, Lepage M, Beaulieu MA, Canesi S. J. Org. Chem. 2012; 77: 2121
  • 46 Fujioka H, Komatsu H, Nakamura T, Miyoshi A, Hata H, Ganesh J, Muraia K, Kita Y. Chem. Commun. 2010; 46: 4133