Synlett 2012; 23(14): 2025-2052
DOI: 10.1055/s-0032-1316639
account
© Georg Thieme Verlag Stuttgart · New York

Design, Synthesis and Evaluation of Light-Activatable Organic Molecules that Target-Selectively Degrade DNA, Proteins and Carbohydrates; an Interdisciplinary Challenge for a Synthetic Organic Chemist

Kazunobu Toshima*
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan, Fax: +81(45)5661576   Email: toshima@applc.keio.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 12 April 2012

Accepted after revision: 11 June 2012

Publication Date:
03 August 2012 (online)


Abstract

We developed chemical methods for target-selective photodegradation of various biomacromolecules, including DNA, proteins, and carbohydrates. The DNA intercalator-carbohydrate moiety, without the enediyne structure found in the enediyne antibiotic neocarzinostatin chromophore, selectively degrades duplex DNA at guanine (G) nucleotides upon photoirradiation. Based on this finding, we designed and synthesized several artificial DNA intercalator-carbohydrate hybrids that can be photoactivated. Among them, several quinoxaline–carbohydrate hybrids were found to photodegrade duplex DNA at the G on the 5′ side of 5′-GG-3′ sites. For protein degradation, we designed and synthesized several 2-phenylquinoline–steroid hormone hybrids and a porphyrin derivative, both of which selectively photodegrade the transcription factor estrogen receptor-α. In addition, we designed and synthesized fullerene–sugar and fullerene–sulfonic acid hybrids that selectively photodegrade HIV-1 protease and amyloid β, respectively. For carbohydrate degradation, we designed and synthesized anthraquinone–lectin hybrids and anthraquinone– and fullerene–boronic acid hybrids for selective photodegradation of target oligosaccharides having affinity for the lectin or boronic acid moiety of the hybrids. Furthermore, we successfully demonstrated practical uses for these light-activatable and molecular-targeted (LAMTA) molecules for controlling the function of DNA, proteins, and carbohydrates both in glass vessels and in cells.

1 Introduction

2 DNA Photodegrading Organic Molecules

2.1 DNA Intercalator–Carbohydrate Hybrids

2.2 Neocarzinostatin DNA Intercalator–Carbohydrate Hybrids for DNA Photodegradation

2.3 Quinoxaline-Carbohydrate Hybrids for DNA Photodegradation

3 Protein Photodegrading Organic Molecules

3.1 Quinoline–Steroid Hormone Hybrids for ER-α Photodegradation

3.2 Fullerene–Carbohydrate Hybrids for HIV-1 Protease Photodegradation

3.3 Fullerene–Sulfonic Acid Hybrid for Amyloid β Photodegradation

4 Carbohydrate-Photodegrading Organic Molecules

4.1 Small Organic Molecules for Oligosaccharide Photodegradation

4.2 Anthraquinone–Lectin Hybrids for Oligosaccharide Photodegradation

4.3 Anthraquinone–Boronic Acid Hybrids for Oligosaccharide Photodegradation

5 Conclusions

 
  • References

    • 1a Armitage B. Chem. Rev. 1998; 98: 1171
    • 1b Cadet J, Vigny P. Bioorg. Photochem. 1990; 1: 1
    • 2a Pervaiz S, Harriman A, Gulliya KS. Free Radical Biol. Med. 1992; 12: 389
    • 2b Miyake R, Owens JT, Xu D, Jackson WM, Meares CF. J. Am. Chem. Soc. 1999; 121: 7453
    • 2c Plourde GII, El-Shafey A, Fouad FS, Purohit AS, Jones GB. Bioorg. Med. Chem. Lett. 2002; 12: 2985
    • 2d Fouad FS, Wright JM, Plourde GII, Purohit AD, Wyatt JK, El-Shafey A, Hynd G, Crasto CF, Lin Y, Jones GB. J. Org. Chem. 2005; 70: 9789
    • 2e Suzuki A, Hasegawa M, Ishii M, Matsumura S, Toshima K. Bioorg. Med. Chem. Lett. 2005; 15: 4624

      For selected reviews, see:
    • 3a Castano AP, Mroz P, Hamblin MR. Nat. Rev. Cancer 2006; 6: 535
    • 3b Macdonald IJ, Dougherty TJ. J. Porphyrins Phthalocyanines 2001; 5: 105
  • 4 Demeunynck M, Bailly C, Wilson WD. DNA and RNA Binders. Wiley-VCH; Weinheim: 2003
  • 5 Bycroft BW. Dictionary of Antibiotics and Related Substances. Chapman and Hall; London: 1988
  • 7 Toshima K, Ouchi H, Okazaki Y, Kano T, Moriguchi M, Asai A, Matsumura S. Angew. Chem., Int. Ed. Engl. 1997; 36: 2748
    • 8a Walker S, Valentine KG, Kahne D. J. Am. Chem. Soc. 1990; 112: 6428
    • 8b Ding W, Ellestad GA. J. Am. Chem. Soc. 1991; 113: 6617
    • 8c Uesugi M, Sugiura Y. Biochemistry 1993; 32: 4622
  • 9 Toshima K, Hasegawa M, Shimizu J, Matsumura S. ARKIVOC 2004; (xiii): 28
    • 10a Toshima K, Maeda Y, Ouchi H, Asai A, Matsumura S. Bioorg. Med. Chem. Lett. 2000; 10: 2163
    • 10b Toshima K, Nakajima Y, Maeda Y, Matsumura S. Lett. Org. Chem. 2004; 1: 31
  • 11 Toshima K, Takano R, Maeda Y, Suzuki M, Asai A, Matsumura S. Angew. Chem. Int. Ed. 1999; 38: 3733
    • 12a Toshima K, Takano R, Ozawa T, Matsumura S. Chem. Commun. 2002; 212
    • 12b Toshima K, Takano R, Ozawa T, Ariga A, Shima Y, Umezawa K, Matsumura S. Tetrahedron 2003; 59: 7057
  • 13 Toshima K, Okuno Y, Nakajima Y, Matsumura S. Bioorg. Med. Chem. Lett. 2002; 12: 671
  • 14 Toshima K, Takai S, Maeda Y, Takano R, Matsumura S. Angew. Chem. Int. Ed. 2000; 39: 3656
  • 15 For a review of neocarzinostatin, see: Goldberg IH. Acc. Chem. Res. 1991; 24: 191
  • 16 Uesawa Y, Kuwahara J, Sugiura Y. Biochem. Biophys. Res. Commun. 1989; 164: 903
  • 17 Gomibüchi T, Hirama M. J. Antibiot. 1995; 48: 738
  • 18 Nicolaou KC, Seitz SP, Papahatjis DP. J. Am. Chem. Soc. 1983; 105: 2430
  • 19 Takahashi K, Suzuki T, Hirama M. Tetrahedron Lett. 1992; 33: 4603
  • 20 Sanger F, Nicklen S, Coulsen AR. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 5463
  • 21 Waring MJ, Fox KR In Molecular Aspects of Anticancer Drug Action . Niedle S, Waring MJ. Macmillan; New York: 1983: 127
  • 22 Waring MJ, Wakelin LP. G. Nature 1974; 252: 653
    • 23a Saito I, Takayama M, Sugiyama H, Nakatani K, Tsuchida A, Yamamoto M. J. Am. Chem. Soc. 1995; 117: 6406
    • 23b Sugiyama H, Saito I. J. Am. Chem. Soc. 1996; 118: 7063
  • 24 Scudieero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR. Cancer Res. 1988; 48: 4827
    • 25a Mayer RJ, Ciechanover AJ, Rechsteiner M. Protein Degradation Vol.1: Ubiquitin and the Chemistry of Life . Wiley-VCH; Weinheim: 2005
    • 25b Mayer RJ, Ciechanover AJ, Rechsteiner M. Protein Degradation Vol.2: The Ubiquitin-Proteasome System . Wiley-VCH; Weinheim: 2005
    • 25c Mayer RJ, Ciechanover AJ, Rechsteiner M. Protein Degradation Vol.3: Cell Biology of the Ubiquitin-Proteasome System . Wiley-VCH; Weinheim: 2006
    • 25d Mayer RJ, Ciechanover AJ, Rechsteiner M. Protein Degradation Vol.4: The Ubiquitin Proteasome System and Disease . Wiley-VCH; Weinheim: 2007
    • 26a Suzuki A, Tsumura K, Tsuzuki T, Matsumura S, Toshima K. Chem. Commun. 2007; 4260
    • 26b Tsumura K, Suzuki A, Tsuzuki T, Tanimoto S, Kaneko H, Matsumura S, Imoto M, Umezawa K, Takahashi D, Toshima K. Org. Biomol. Chem. 2011; 9: 6357
  • 27 Tanimoto S, Matsumura S, Toshima K. Chem. Commun. 2008; 3678
    • 28a Tanimoto S, Sakai S, Matsumura S, Takahashi D, Toshima K. Chem. Commun. 2008; 5767
    • 28b Tanimoto S, Sakai S, Kudo E, Okada S, Matsumura S, Takahashi D, Toshima K. Chem. Asian J. 2012; 7: 911
    • 29a Ishida Y, Tanimoto S, Takahashi D, Toshima K. Med. Chem. Commun. 2010; 1: 212
    • 29b Ishida Y, Fujii T, Oka K, Takahashi D, Toshima K. Chem. Asian J. 2011; 6: 2312
  • 30 Vu AT, Cohn ST, Manas ES, Harris HA, Mewshaw RE. Bioorg. Med. Chem. Lett. 2005; 15: 4520
  • 31 Scott JA, McGuire WL In Endocrine-Dependent Tumors . Voight KD, Knabbe C. Raven; New York: 1991: 179
  • 32 Schägger H, von Jagow G. Anal. Biochem. 1987; 166: 368

    • For similar examples, see:
    • 33a Jones GB, Wright JM, Hynd G, Wyatt JK, Yancisin M, Brown MA. Org. Lett. 2000; 2: 1863
    • 33b Furuta T, Sakai M, Hayashi H, Asakawa T, Kataoka F, Fujii S, Suzuki T, Suzuki Y, Tanaka K, Fishkin N, Nakanishi K. Chem. Commun. 2005; 4575
  • 34 Bolger R, Wiese TE, Ervin K, Nestich S, Checovich W. Environ. Health Pers. 1998; 106: 551
  • 35 MOE software (version 2008.10) available from Chemical Computing Group Inc., 1010 Sherbrooke Street West, Montreal, QC, Canada, http://www.chemcomp.com
  • 36 Estrogen receptor-α competitor assay, green® available from PanVera Co. was used for the present study
    • 37a Wertz E, Bolton B. Electron Spin Resonance . McGraw-Hill; New York: 1972
    • 37b Swartz HM, Bolton JR, Borg DC. Biological Application of Electron Spin Resonance . Wiley-Interscience; New York: 1972
    • 38a Halliwell B, Gutteridge JM. C. Free Radicals in Biology and Medicine . Oxford University Press; Oxford: 1985
    • 38b Davies KJ. A. J. Biol. Chem. 1987; 262: 9895
    • 38c Davies MJ. Biochem. Biophys. Res. Commun. 2003; 305: 761
  • 39 Dean RT, Fu S, Stocker R, Davies MJ. Biochem. J. 1997; 324: 1
  • 40 Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 2496
    • 41a Gallo RC, Montagnier L. N. Engl. J. Med. 2003; 349: 2283
    • 41b Pomerantz RJ, Horn DL. Nat. Med. 2003; 9: 867
  • 42 Kohl NE, Emini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon RA. F, Scolnick EM, Sigal IS. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 4686
    • 43a Pokorná J, Machala L, Řezáčová P, Konvalinka J. Viruses 2009; 1: 1209
    • 43b Wlodawer A, Erickson JW. Annu. Rev. Biochem. 1993; 62: 543
    • 43c Debouck C. AIDS Res. Hum. Retroviruses 1992; 8: 153
    • 44a Langa De La Puente F, Nierengarten J.-F. Fullerenes: Principles and Applications . Royal Society of Chemistry; Cambridge, UK: 2007
    • 44b Bosi S, Ros TD, Spalluto G, Prato M. Eur. J. Med. Chem. 2003; 38: 913
    • 44c Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y. J. Am. Chem. Soc. 1993; 115: 7918
    • 44d Prat F, Hou C.-C, Foote CS. J. Am. Chem. Soc. 1997; 119: 5051
    • 44e Bernstein R, Prat F, Foote CR. J. Am. Chem. Soc. 1999; 121: 464
    • 45a Friedman SH, DeCamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL. J. Am. Chem. Soc. 1993; 115: 6506
    • 45b Friedman SH, Ganapathi PS, Rubin Y, Kenyon GL. J. Med. Chem. 1998; 41: 2424

      For other fullerene glycoconjugates, see:
    • 46a Vasella A, Uhlmann P, Waldraff CA. A, Diederich F, Thilgen C. Angew. Chem., Int. Ed. Engl. 1992; 31: 1388
    • 46b Yashiro A, Nishida Y, Ohno M, Eguchi S, Kobayashi K. Tetrahedron Lett. 1998; 39: 9031
    • 46c Kato H, Yashiro A, Mizuno A, Nishida Y, Kobayashi K, Shinohara H. Bioorg. Med. Chem. Lett. 2001; 11: 2935
    • 47a Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T. J. Am. Chem. Soc. 2003; 125: 12803
    • 47b Kawashima T, Ohkubo K, Fukuzumi S. Org. Biomol. Chem. 2010; 8: 994
  • 48 Cheng Y, Prusoff WH. Biochem. Pharmacol. 1973; 22: 3099
  • 49 Giffin MJ, Heaslet H, Brik A, Lin Y.-C, Cauvi G, Wong C.-H, McRee DE, Elder JH, Stout CD, Torbett BE. J. Med. Chem. 2008; 51: 6263
    • 50a Hardy J, Higgins GA. Science 1992; 256: 184
    • 50b Haass C, De Strooper B. Science 1999; 286: 916
    • 50c Selkoe DJ. Physiol. Rev. 2001; 81: 741
    • 50d Hardy J, Selkoe DJ. Science 2002; 297: 353
    • 51a Selkoe DJ. Nature Suppl. 1999; 399: A23
    • 51b Sambamurti K, Greig NH, Lahiri DK. Neuromol. Med. 2002; 1: 1
    • 52a Gravina SA, Ho L, Eckman CB, Long KE, Otvos LJr, Younkin LH, Suzuki N, Younkin SG. J. Biol. Chem. 1995; 270: 7013
    • 52b Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Kraft GA, Klein WL. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 6448
    • 52c El-Agnaf OM, Mahil DS, Patel BP, Austen BM. Biochem. Biophys. Res. Commun. 2000; 273: 1003
    • 52d Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ. Biochem. Soc. Trans. 2002; 30: 552
    • 52e Kim HJ, Chae SC, Lee DK, Chromy B, Lee SC, Park YC, Klein WL, Krafft GA, Hong ST. FASEB J. 2003; 17: 118
    • 52f Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH. Nat. Neurosci. 2004; 8: 79
    • 52g Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe DJ. Neuron 2009; 62: 788
    • 53a Wood SJ, MacKenzie L, Maleeff B, Hurle MR, Wetzel R. J. Biol. Chem. 1996; 271: 4086
    • 53b Howlett DR, Perry AE, Godfrey F, Swatton JE, Jennings KH, Spitzfaden C, Wadsworth H, Wood SJ, Markwell RE. Biochem. J. 1999; 340: 283
    • 53c Howlett DR, George AR, Owen DE, Ward RV, Markwell RE. Biochem. J. 1999; 343: 419
    • 53d Allsop D, Gibson G, Martin IK, Moore S, Turnbull S, Twyman LJ. Bioorg. Med. Chem. Lett. 2001; 11: 255
    • 53e Felice FG, Houzel J, Garcia-Abreu J, Louzada PR. Jr, Afonso RC, Meirelles MN, Lent R, Neto VM, Ferreira ST. FASEB J. 2001; 15: 1297
    • 53f Cohen T, Frydman-Marom A, Rechter M, Gazit E. Biochemistry 2006; 45: 4727
    • 53g Kokkoni N, Stott K, Amijee H, Mason JM, Doig AJ. Biochemistry 2006; 45: 9906
    • 53h Amijee H, Madine J, Middleton DA, Doig AJ. Biochem. Soc. Trans. 2009; 37: 692
    • 54a Suh J, Yoo SH, Kim MG, Jeong K, Ahn JY, Kim M.-S, Chae PS, Lee TY, Lee J, Lee J, Jang YA, Ko EH. Angew. Chem. Int. Ed. 2007; 119: 7194
    • 54b Suh J, Yoo SH, Kim MG, Jeong K, Ahn JY, Kim M.-S, Chae PS, Lee TY, Lee J, Lee J, Jang YA, Ko EH. Angew. Chem. Int. Ed. 2007; 46: 7064
  • 55 Kim JE, Lee M. Biochem. Biophys. Res. Commun. 2003; 303: 576
  • 56 Maggini M, Scorrano G, Prato M. J. Am. Chem. Soc. 1993; 115: 9798
  • 57 LeVine HIII. Protein Sci. 1993; 2: 404
  • 58 Okuda K, Hirota T, Hirobe M, Nagano T, Mochizuki M, Mashino T. Fullerene Sci. Technol. 2000; 8: 127
  • 5942 monomer was prepared according to the literature, see: Rangachari V, Moore BD, Reed DK, Sonoda LK, Bridges AW, Conboy E, Hartigan D, Rosenberry T. Biochemistry 2007; 46: 12451
  • 6042 oligomers were prepared by incubation of Aβ42 monomer in Tris-HCl buffer (pH 8.0, 20 mm) at 25 °C for 14 h
    • 61a Shearman MS, Ragan CI, Iversen LL. Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 1470
    • 61b Hansen MB, Nielsen SE, Berg K. J. Immunol. Methods 1989; 119: 203
  • 62 Blanchard BJ, Chen A, Rozeboom LM, Stafford KA, Weigele P, Ingram VM. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 14326
  • 63 Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen P, Kayed R, Glabe CG, Frautschy SA, Cole GM. J. Biol. Chem. 2005; 275: 5892
  • 64 Ernst B, Hart GW, Sinaÿ P. Carbohydrates in Chemistry & Biology . Wiley-VCH; Weinheim: 2000
  • 65 Kamerling JP, Boons G.-J, Lee YC, Suzuki A, Taniguchi N, Voragen AG. J. Comprehensive Glycoscience . Elsevier; Oxford: 2007
  • 66 Ioffe E, Stanley P. Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 728
  • 67 Metzler M, Gertz A, Sarkar M, Schachter H, Schrader JW, Marth JD. EMBO J. 1994; 13: 2056
  • 68 Lowe JB, Marth JD. Annu. Rev. Biochem. 2003; 72: 643
  • 69 Ishii M, Matsumura S, Toshima K. Angew. Chem. Int. Ed. 2007; 46: 8396
  • 70 Takahashi D, Hirono S, Hayashi C, Igarashi M, Nishimura Y, Toshima K. Angew. Chem. Int. Ed. 2010; 49: 10096
  • 71 Takahashi D, Hirono S, Toshima K. Chem. Commun. 2011; 47: 11712
  • 72 Imai Y, Hirono S, Matsuba H, Suzuki T, Kobayashi Y, Kawagishi H, Takahashi D, Toshima K. Chem. Asian J. 2011; 7: 97
  • 73 Koch T, Ropp JD, Sligar SG, Schuster GB. Photochem. Photobiol. 1993; 58: 554
  • 74 Bruce JM In The Chemistry of the Quinoid Compounds . Patai S. Wiley-VCH; New York: 1974. Part 1 465
  • 75 Bender ML, Komiyama M. Cyclodextrin Chemistry . Springer-Verlag; New York: 1978
  • 76 Simkovic I, Alfoldi J. Carbohydr. Res. 1990; 201: 346
  • 77 Gibson AR, Melton LD, Slessor KN. Can. J. Chem. 1974; 52: 3095
  • 78 Aquino AM, Abelt CJ, Berger KL, Darragh CM, Kelley SE, Cossette MV. J. Am. Chem. Soc. 1990; 112: 5819
  • 79 Pogozelski WK, Tullius TD. Chem. Rev. 1998; 98: 1089
  • 80 Nishibayashi Y, Saito M, Uemura S, Takemura S, Takemura H, Yoshida Z. Nature 2004; 428: 279
  • 81 Lis H, Sharon N. Science 1989; 246: 227
  • 82 Lotan R, Skutelsky E, Danon D, Sharon N. J. Biol. Chem. 1975; 250: 8518
  • 83 Ravishankar R, Ravindran M, Suguna K, Surolia A, Vijayan M. Curr. Sci. 1997; 72: 855
  • 84 Kawagishi H, Kamei A, Kobayashi Y, Morita T, Michira H. Jpn. Kokai Tokkyo Koho 2009; JP2009-13138A
  • 85 Hamachi I, Nagase T, Shinkai S. J. Am. Chem. Soc. 2000; 122: 12065
  • 86 Resek JF, Bhattacharya S, Khorana HG. J. Org. Chem. 1993; 58: 7598
  • 87 Koshi Y, Nakata E, Miyagawa M, Tsukiji S, Ogawa T, Hamachi I. J. Am. Chem. Soc. 2008; 130: 245
  • 88 Lis H, Sharon N. Chem. Rev. 1998; 98: 637
  • 89 Rudiger H, Gabius HJ. Glycoconjugate J. 2001; 18: 589
  • 90 Dam TK, Brewer CF. Chem. Rev. 2002; 102: 387
  • 91 Daffe M, Brennan PJ, McNeil M. J. Biol. Chem. 1990; 265: 6734
  • 92 Mikušová K, Yagi T, Stern R, McNeil MR, Besra GS, Crick DC, Brennan PJ. J. Biol. Chem. 2000; 275: 33890
  • 93 Scherman MS, Winans KA, Stern RJ, Jones V, Bertozzi CR, McNeil MR. Antimicrob. Agents Chemother. 2003; 47: 378
  • 94 Lorand JP, Edwards JO. J. Org. Chem. 1959; 24: 769
  • 95 Springsteen G, Wang B. Tetrahedron 2002; 58: 5291
  • 96 James TD In Boronic Acids in Organic Synthesis and Chemical Biology . Hall DG. Wiley-VCH; Weinheim: 2005: 441
  • 97 Norrild JC, Eggert H. J. Am. Chem. Soc. 1995; 117: 1479
  • 98 Springsteen G, Wang B. Chem. Commun. 2001; 1608
  • 99 Djanashvili K, Frullano L, Peters JA. Chem. Eur. J. 2005; 11: 4010
  • 100 Navarre WW, Schneewind O. Microbiol. Mol. Biol. Rev. 1999; 63: 174