Synthesis 2012; 44(14): 2155-2161
DOI: 10.1055/s-0031-1290776
special topic
© Georg Thieme Verlag Stuttgart · New York

Lewis Acid Promoted Reactions of 1,1-Diarylallenes and Ketone Derivatives: Synthesis of Indenes by an Addition/Cyclization Reaction

Shoko Yamazaki*
a   Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan
,
Yugo Fukushima
a   Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan
b   Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan, Fax: +81(742)279289   Email: yamazaks@nara-edu.ac.jp
,
Tetsuma Ukai
a   Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan
,
Kohei Tatsumi
a   Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan
,
Akiya Ogawa
b   Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan, Fax: +81(742)279289   Email: yamazaks@nara-edu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 19 December 2011

Accepted: 01 March 2012

Publication Date:
03 April 2012 (online)


Abstract

The Lewis acid promoted reaction of 1,1-diarylallenes with ketone derivatives was examined. The tin(IV) chloride promoted reaction of diarylallenes with vinyl ketones gave indene derivatives through a conjugate addition/cyclization reaction. The reaction of diphenylallene with diethyl oxomalonate in the presence of one equivalent of tin(IV) chloride at –40 °C gave diethyl hydroxy(3-phenyl-1H-inden-2-yl)malonate as the major product through a carbonyl addition/cyclization reaction, whereas the same reactants in the presence of 0.2 equivalents of tin(IV) chloride at 80 °C gave diethyl (3-phenyl-1H-inden-2-yl)malonate. Diethyl hydroxy(3-phenyl-1H-inden-2-yl)malonate was also converted into the latter product on heating at 80 °C in the presence of 0.2 equivalents of tin(IV) chloride.

Supporting Information

 
  • References

    • 1a The Chemistry of the Allenes . Vol. 1. Landor SR. Academic Press; London: 1982
    • 1b Modern Allene Chemistry . Vol. 1 and 2. Krause N, Hashmi AS. K. Wiley-VCH; Weinheim: 2004
    • 1c Ma S. Acc. Chem. Res. 2009; 42: 1679
    • 1d Ma S. Chem. Rev. 2005; 105: 2829
    • 1e Sydnes LK. Chem. Rev. 2003; 103: 1133
    • 1f Hassan HH. A. M. Curr. Org. Synth. 2007; 4: 413
    • 2a Ma S In Palladium in Organic Synthesis . Tsuji J. Springer; Berlin: 2005: 183
    • 2b Ma S. Acc. Chem. Res. 2003; 36: 701
    • 2c Zimmer R, Dinesh CU, Nandanan E, Khan FA. Chem. Rev. 2000; 100: 3067
    • 2d Ma S. Pure Appl. Chem. 2006; 78: 197
    • 2e Krause N, Winter C. Chem. Rev. 2011; 111: 1994
    • 3a Lewis Acids in Organic Synthesis . Vols. 1 and 2. Yamamoto H. Wiley-VCH; Weinheim: 2000
    • 3b Lewis Acid Reagents: A Practical Approach . Yamamoto H. Oxford University Press; Oxford: 1999
    • 3c Santelli M, Pons JM. Lewis Acids and Selectivity in Organic Synthesis . CRC Press; Boca Raton: 1996
    • 4a Xu B, Shi M. Synlett 2003; 1639
    • 4b Reynolds TE, Bharadwaj AR, Scheidt KA. J. Am. Chem. Soc. 2006; 128: 15382
    • 4c Reynolds TE, Binkley MS, Scheidt KA. Org. Lett. 2008; 10: 2449
    • 4d Kang S.-K, Kim Y.-M, Ha Y.-H, Yu C.-M, Yang H, Lim Y. Tetrahedron Lett. 2002; 43: 9105
    • 4e Lu J.-M, Shi M. Org. Lett. 2006; 8: 5317
    • 4f Lu J.-M, Shi M. Org. Lett. 2007; 9: 1805
  • 5 Yamazaki S, Yamamoto Y, Fukushima Y, Takebayashi M, Ukai T, Mikata Y. J. Org. Chem. 2010; 75: 5216
    • For details of some bioactive compounds containing indene moieties, see:

    • 6a Ahn JH, Shin MS, Jung SH, Kim JA, Kim HM, Kim SH, Kang SK, Kim KR, Rhee SD, Park SD, Lee JM, Lee JH, Cheon HG, Kim SS. Bioorg. Med. Chem. Lett. 2007; 17: 5239
    • 6b Di Stefano A, Sozio P, Cacciatore I, Cocco A, Giorgioni G, Costa B, Montali M, Lucacchini A, Martini C, Spoto G, Di Pietrantonio F, Di Matteo E, Pinnen F. J. Med. Chem. 2005; 48: 2646
    • 6c Guillon J, Dallemagne P, Léger J.-M, Sopkova J, Bovy PR, Jarry C, Rault S. Bioorg. Med. Chem. 2002; 10: 1043
    • 6d Kolanos R, Siripurapu U, Pullagurla M, Riaz M, Setola V, Roth BL, Dukat M, Glennon RA. Bioorg. Med. Chem. Lett. 2005; 15: 1987
    • 6e Watanabe N, Nakagava H, Ikeno A, Minato H, Kohayakawa C, Tsuji J. Bioorg. Med. Chem. Lett. 2003; 13: 4317
    • For some recent examples of indene-formation reactions, see:

    • 7a Xi Z, Guo R, Mito S, Yan H, Kanno K, Nakajima K, Takahashi T. J. Org. Chem. 2003; 68: 1252
    • 7b Liu C.-R, Yang F, Jin Y.-Z, Ma X.-T, Cheng D.-J, Li N, Tian S.-K. Org. Lett. 2010; 12: 3832
    • 7c Kurouchi H, Sugimoto H, Otani Y, Ohwada T. J. Am. Chem. Soc. 2010; 132: 807
    • 7d Ignatenko VA, Deligonul N, Viswanathan R. Org. Lett. 2010; 12: 3594
  • 8 When a catalytic amount (0.2 equiv) of SnCl4 was used in the reaction of 1a and 4a on a 0.1-mmol scale (CH2Cl2, 3–20 h), the yields of the indene product 5a were comparable to that shown in Table 1 (entry 1); however, the reactions between 1a and 4b and between 1b and 4a were less efficient under these catalytic conditions
  • 9 Hall Jr. HK, Sentman RC. J. Org. Chem. 1982; 47: 4572
    • 10a Wang J, Huang W, Zhang Z, Xiang X, Liu R, Zhou X. J. Org. Chem. 2009; 74: 3299
    • 10b Smith CD, Rosocha G, Mui L, Batey RA. J. Org. Chem. 2010; 75: 4716
  • 11 Yao S, Roberson M, Reichel F, Hazell RG, Jorgensen KA. J. Org. Chem. 1999; 64: 6677
    • 12a Woodward RB, Hoffmann R. The Conservation of Orbital Symmetry . Verlag Chemie; Weinheim: 1970
    • 12b Habermas KL, Denmark SE, Jones TK. Org. React. (N.Y.) 1994; 45: 1
    • 12c Pellissier H. Tetrahedron 2005; 61: 6479
    • 12d Frontier AJ, Collison C. Tetrahedron 2005; 61: 7577
    • 12e Suzuki T, Ohwada T, Shudo K. J. Am. Chem. Soc. 1997; 119: 6774
  • 13 Liu L.-P, Shi M. Tetrahedron 2007; 63: 4535
  • 14 Baird MS, Nizovtsev AV, Bolesov IG. Tetrahedron 2002; 58: 1581