Synthesis 2011(9): 1321-1346  
DOI: 10.1055/s-0030-1258434
REVIEW
© Georg Thieme Verlag Stuttgart ˙ New York

Allylation of Imines and Their Derivatives with Organoboron Reagents: Stereocontrolled Synthesis of Homoallylic Amines

Timothy R. Ramadhar, Robert A. Batey*
Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
Fax: +1(416)9785059; e-Mail: rbatey@chem.utoronto.ca;
Further Information

Publication History

Received 9 November 2010
Publication Date:
11 February 2011 (online)

Abstract

Homoallylic amines serve as important precursors for the synthesis of a variety of natural products and pharmaceutically relevant compounds. One widely used strategy for homoallylic amine synthesis is the addition of allylic metal or metalloid derivatives to imines or related functional groups. The use of allylic boron compounds for these reactions has emerged as an important synthe­tic approach, providing a robust and chemoselective method for efficient and stereocontrolled access to various homoallylic amines. In this review, a comprehensive and critical analysis of imine allyl­boration and crotylboration methods using organoborane, organoboronate and potassium organotrifluoroborate reagents is provided. These approaches include direct methods that accomplish diastereo- or enantiocontrolled addition of the organoboron species. Additionally, organoboron-based transition-metal-catalyzed allylation of imines and their respective surrogates using copper, indium, iridium, palladium or zinc catalysis is discussed. Finally, coverage on the use of allenyl- and propargylboron compounds and their application for the synthesis of homopropargylic and homoallenyl amines is provided.

1 Introduction

2 Organoborane Reagents

3 Organoboronic Acid and Ester Reagents

4 Potassium Organotrifluoroborate Reagents

5 Organoboron-Based Transition-Metal-Catalyzed Allylation

5.1 Copper Catalysis

5.2 Indium Catalysis

5.3 Iridium Catalysis

5.4 Palladium Catalysis

5.5 Zinc Catalysis

6 Allenylation and Propargylation Reactions

7 Concluding Remarks

    References

  • 1 Lawrence SA. Amines: Synthesis, Properties and Applications   Cambridge University Press; Cambridge UK: 2004. 
  • For some earlier reviews based exclusively on the addition of allyl nucleophiles to unsaturated C-N functionalities, see:
  • 2a Ding H. Friestad GK. Synthesis  2005,  2815 
  • 2b Merino P. Tejero T. Delso JI. Mannucci V. Curr. Org. Synth.  2005,  2:  479 
  • 2c Gung BW. Org. React.  2004,  64:  1 
  • 2d Kobayashi S. Sugiura M. Ogawa C. Adv. Synth. Catal.  2004,  346:  1023 
  • 2e Yamamoto Y. Asao N. Chem. Rev.  1993,  93:  2207 
  • 2f Puentes CO. Kouznetsov V. J. Heterocycl. Chem.  2002,  39:  595 
  • 3a Stereodirected Synthesis with Organoboranes   Trost BM. Springer; Berlin: 1995. 
  • 3b Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine   Hall DG. Wiley-VCH; Weinheim: 2005. 
  • 4a Kennedy JWJ. Hall DG. Angew. Chem. Int. Ed.  2003,  42:  4732 ; Angew. Chem. 2003, 115, 4880
  • 4b Gravel M. Lachance H. Lu X. Hall DG. Synthesis  2004,  1290 
  • 4c Hall DG. Synlett  2007,  1644 
  • 4d Lachance H. Hall DG. Org. React.  2007,  73:  1 
  • 4e Elford TG. Hall DG. Synthesis  2010,  893 
  • For some reviews dealing with general nucleophilic additions to imines, including allylation, and a description of associated problems, see:
  • 5a Risch N. Arend M. In Houben-Weyl: Stereoselective Synthesis   Vol. E21b:  Helmchen G. Hoffmann RW. Mulzer J. Schaumann E. Georg Thieme Verlag; Stuttgart: 1995.  p.1894 
  • 5b Arend M. Angew. Chem. Int. Ed.  1999,  38:  2873 ; Angew. Chem. 1999, 111, 3047
  • 5c Kobayashi S. Ishitani H. Chem. Rev.  1999,  99:  1069 
  • 5d Bloch R. Chem. Rev.  1998,  98:  1407 
  • 5e Enders D. Reinhold U. Tetrahedron: Asymmetry  1997,  8:  1895 
  • 5f Friestad G. K. Mathies A. K. Tetrahedron  2007,  63:  2541 
  • 5g Ferraris D. Tetrahedron  2007,  63:  9581 
  • 6 For an alternate and brief review on allylations with organoboranes, see: Ramachandran PV. Burghardt TE. Pure Appl. Chem.  2006,  78:  1397 
  • 7a Bubnov YN. Mikhailov BM. Bull. Acad. Sci. USSR, Div. Chem. Sci.  1967,  16:  467 ; Izv. Akad. Nauk SSSR, Ser. Khim. 1967, 472
  • 7b Bubnov YN. Bogdanov VS. Mikhailov BM. J. Obshch. Khim.  1968,  38:  260 
  • 8 Meller A. Gerger W. Monatsh. Chem.  1974,  105:  684 
  • 9 Yamamoto Y. Komatsu T. Maruyama K. J. Am. Chem. Soc.  1984,  106:  5031 
  • 10 Yamamoto Y. Ito W. Maruyama K. J. Chem. Soc., Chem. Commun.  1984,  1004 
  • 11 Yamamoto Y. Komatsu T. Maruyama K. J. Org. Chem.  1985,  50:  3115 
  • 13 Yamamoto Y. Nishii S. Maruyama K. Komatsu T. Ito W. J. Am. Chem. Soc.  1986,  108:  7778 
  • 14 Yamamoto Y. Ito W. Maruyama K. J. Chem. Soc., Chem. Commun.  1985,  1131 
  • 15 Yamamoto Y. Ito W. Tetrahedron  1988,  44:  5415 
  • 16a Bubnov YN. In Current Topics in the Chemistry of Boron   Kabalka GW. Royal Society of Chemistry; Cambridge UK: 1994.  p.44 
  • 16b Bubnov YN. Pure Appl. Chem.  1994,  66:  235 
  • 16c Bubnov YN. Russ. Chem. Bull.  1995,  44:  1156 ; Izv. Akad. Nauk, Ser. Khim. 1995, 1203
  • 17a Bubnov YN. Shagova EA. Evchenko SV. Ignatenko AV. Gridnev ID. Bull. Acad. Sci. USSR, Div. Chem. Sci.  1991,  40:  2315 ; Izv. Akad. Nauk SSSR, Ser. Khim. 1991, 2644
  • 17b Bubnov YN. Shagova EA. Evchenko SV. Dekaprilevich MO. Struchkov YT. Russ. Chem. Bull.  1994,  657 ; Izv. Akad. Nauk, Ser. Chim. 1994, 705
  • 17c Bubnov YN. Shagova EA. Evchenko SV. Ignatenko AV. Russ. Chem. Bull.  1994,  43:  645 ; Izv. Akad. Nauk, Ser. Khim. 1994, 693
  • 17d Bubnov YN. Klimkina EV. Dekaprilevich MO. Struchkov YT. Russ. Chem. Bull.  1996,  45:  2595 ; Izv. Akad. Nauk, Ser. Khim. 1996, 2736
  • 17e Bubnov YN. Klimkina EV. Ignatenko AV. Gridnev ID. Tetrahedron Lett.  1996,  37:  1317 
  • 17f Bubnov YN. In Advanced Boron Chemistry   Siebert W. Royal Society of Chemistry; Cambridge UK: 1997.  p.123 
  • 17g Bubnov YN. Demina EE. Ignatenko AV. Russ. Chem. Bull.  1997,  46:  606 ; Izv. Akad. Nauk, Ser. Khim. 1997, 627
  • 17h Bubnov YN. Demina EE. Ignatenko AV. Russ. Chem. Bull.  1997,  46:  1306 ; Izv. Akad. Nauk, Ser. Khim. 1997, 1361
  • 17i Bubnov YN. Demina EE. Dekaprilevich MO. Struchkov YT. Russ. Chem. Bull.  1997,  46:  1356 ; Izv. Akad. Nauk, Ser. Khim. 1997, 1413
  • 17j Bubnov YN. Klimkina EV. Ignatenko AV. Russ. Chem. Bull.  1998,  47:  451 ; Izv. Akad. Nauk, Ser. Khim. 1998, 467
  • 17k Bubnov YN. Klimkina EV. Ignatenko AV. Russ. Chem. Bull.  1998,  47:  941 ; Izv. Akad. Nauk, Ser. Khim. 1998, 971
  • 17l Bubnov YN. Demina EE. Belsky VK. Zatonsky GV. Ignatenko AV. Russ. Chem. Bull.  1998,  47:  2249 ; Izv. Akad. Nauk, Ser. Khim. 1998, 2320
  • 17m Bubnov YN. Klimkina EV. Starikova ZA. Ignatenko AV. Russ. Chem. Bull.  2001,  50:  1078 ; Izv. Akad. Nauk, Ser. Khim. 2001, 1032
  • 18a Bubnov YN. Shagova SV. Evchenko SV. Ignatenko AV. Russ. Chem. Bull.  1993,  42:  1610 ; Izv. Akad. Nauk, Ser. Khim. 1993, 1672
  • 18b Bubnov YN. Klimkina EV. Ignatenko AV. Gridnev ID. Tetrahedron Lett.  1997,  38:  4631 
  • 19a Bubnov YN. Evchenko SV. Ignatenko AV. Russ. Chem. Bull.  1993,  42:  1268 ; Izv. Akad. Nauk, Ser. Khim. 1993, 1325
  • 19b Bubnov YN. Zykov AY. Ignatenko AV. Mikhailovsky AG. Shklyaev YV. Shklyaev VS. Russ. Chem. Bull.  1996,  890 ; Izv. Akad. Nauk, Ser. Khim. 1996, 935
  • 19c Bubnov YN. Klimkina EV. Ignatenko AG. Russ. Chem. Bull.  1998,  47:  1175 ; Izv. Akad. Nauk, Ser. Khim. 1998, 1206
  • 19d Mikhailovskii AG. Bubnov YN. Syropyatov BY. Dolzhenko AV. Timofeeva YP. Pharm. Chem. J.  1999,  33:  128 ; Khim.-Farm. Zh. 1999, 33, 15
  • 19e Pastukhov FV. Yampolsky IV. Bubnov YN. J. Organomet. Chem.  2002,  657:  123 
  • 20 Bubnov YN. Evchenko SV. Ignatenko AV. Bull. Acad. Sci. USSR, Div. Chem. Sci.  1992,  41:  2239 ; Izv. Akad. Nauk SSSR, Ser. Khim. 1992, 2815
  • 21 Bubnov YN. Gurskii ME. Potapova TV. Russ. Chem. Bull.  1996,  45:  2665 ; Izv. Akad. Nauk, Ser. Khim. 1996, 2807
  • 22a Bubnov YN. Lavrinovich LI. Zykov AY. Klimkina EV. Ignatenko AV. Russ. Chem. Bull.  1993,  1269 ; Izv. Akad. Nauk, Ser. Khim. 1993, 1327
  • 22b Bubnov YN. Zhun IV. Klimkina EV. Ignatenko AV. Starikova ZA. Eur. J. Org. Chem.  2000,  3323 
  • 23 Bubnov YN. Klimkina EV. Lavrinovich LI. Zykov AY. Ignatenko AV. Russ. Chem. Bull.  1999,  48:  1696 ; Izv. Akad. Nauk, Ser. Khim. 1999, 1718
  • 24 Gurskii ME. Potapova TV. Bubnov YN. Russ. Chem. Bull.  1998,  47:  1410 ; Izv. Akad. Nauk, Ser. Khim. 1998, 1450
  • 25 Bubnov Y. N., Zykov A. Y., Lavrinovich L. I., Ignatenko A. V.; Russ. Chem. Bull.; 1993, 42: 1271; Izv. Akad. Nauk, Ser. Khim. 1993, 1329
  • 26 Bubnov YN. Zheludeva VI. Rudashevskaya TY. Kuznetsova TS. Bull. Acad. Sci. USSR, Div. Chem. Sci.  1989,  38:  1073 ; Izv. Akad. Nauk SSSR, Ser. Khim. 1989, 1179
  • 27 Lavrinovich LI. Ignatenko AV. Bubnov YN. Bull. Acad. Sci. USSR, Div. Chem. Sci.  1992,  41:  2051 ; Izv. Akad. Nauk SSSR, Ser. Khim. 1992, 2597
  • 28 Bubnov YN. Pastukhov FV. Yampolsky IV. Ignatenko AV. Eur. J. Org. Chem.  2000,  1503 
  • 29a Bespalova NB. Shuvalova OV. Zaikin VG. Borisov RS. Pastukhov FV. Bubnov YN. Russ. Chem. Bull.  2002,  51:  645 ; Izv. Akad. Nauk, Ser. Khim. 2002, 596
  • 29b Nieczypor P. Mol JC. Bespalova NB. Bubnov YN. Eur. J. Org. Chem.  2004,  812 
  • 29c Kuznetsov NY. Zhun IV. Khrustalev VN. Bubnov YN. Russ. Chem. Bull.  2005,  2229 ; Izv. Akad. Nauk, Ser. Khim. 2005, 2160
  • 29d Bubnov YN. Kuznetsov NY. Gurskii ME. Semenova AK. Kolomnikova GD. Potapova TV. Pure Appl. Chem.  2006,  78:  1357 
  • 29e Kuznetsov NY. Khrustalev VN. Godovikov IA. Bubnov YN. Eur. J. Org. Chem.  2006,  113 
  • 29f Kuznetsov NY. Lyssenko KA. Peregudov AS. Bubnov YN. Russ. Chem. Bull.  2007,  56:  1569 ; Izv. Akad. Nauk, Ser. Khim. 2007, 1510
  • 29g Kuznetsov NY. Kolomnikova GD. Khrustalev VN. Golovanov DG. Bubnov YN. Eur. J. Org. Chem.  2008,  5647 
  • 29h Bubnov YN. Gurskii ME. Erdyakov SY. Kizas OA. Kolomnikova GD. Kuznetsov NY. Potapova TV. Varzatskii OA. Voloshin YZ. J. Organomet. Chem.  2009,  694:  1754 
  • 30 Isono N. Mori M. J. Org. Chem.  1995,  60:  115 
  • 31 For a review, see: Bubnov YN. Klimkina EV. Chem. Heterocycl. Compd. (Engl. Transl.)  1999,  35:  888 ; and references therein
  • 32 Schkeryantz JM. Woo JCG. Danishefsky SJ. J. Am. Chem. Soc.  1995,  117:  7025 
  • 33 Depew KM. Danishefsky SJ. Rosen N. Sepp-Lorenzino L. J. Am. Chem. Soc.  1996,  118:  12463 
  • 34a Brown HC. Jadhav PK. J. Am. Chem. Soc.  1983,  105:  2092 
  • 34b Brown HC. Bhat KS. J. Am. Chem. Soc.  1986,  108:  293 
  • 34c Brown HC. Jadhav PK. Bhat KS. J. Am. Chem. Soc.  1988,  110:  1535 
  • 34d Ramachandran PV. Aldrichimica Acta  2002,  35:  23 
  • 35 Watanabe K. Ito K. Itsuno S. Tetrahedron: Asymmetry  1995,  6:  1531 
  • 36 Chen G.-M. Ramachandran PV. Brown HC. Angew. Chem. Int. Ed.  1999,  38:  825 ; Angew. Chem. 1999, 111, 828
  • 37 Brown HC. Racherla US. Pellechia PJ. J. Org. Chem.  1990,  55:  1868 
  • 38 Ramachandran PV. Burghardt TE. Chem. Eur. J.  2005,  11:  4387 
  • 39 Watanabe K. Kuroda S. Yokoi A. Ito K. Itsuno S. J. Organomet. Chem.  1999,  581:  103 
  • 40 Ramachandran PV. Burghardt TE. Bland-Berry L. J. Org. Chem.  2005,  70:  7911 
  • 41 Ramachandran PV. Biswas D. Org. Lett.  2007,  9:  3025 
  • 42 Ramachandran PV. Reddy GV. Biswas D. J. Fluorine Chem.  2009,  130:  204 
  • 43 Ramachandran PV. Biswas D. Krzeminski MP. Chen G.-M. Tetrahedron Lett.  2010,  51:  332 
  • 44 Hernandez E. Canales E. Gonzalez E. Soderquist JA. Pure Appl. Chem.  2006,  78:  1389 
  • 45a Burgos CH. Canales E. Matos K. Soderquist JA. J. Am. Chem. Soc.  2005,  127:  8044 
  • 45b Román JG. Soderquist JA. J. Org. Chem.  2007,  72:  9772 
  • 45c Soto-Cairoli B. Soderquist JA. Org. Lett.  2009,  11:  401 
  • 46 Canales E. Prasad KG. Soderquist JA. J. Am. Chem. Soc.  2005,  127:  11572 
  • 47 Canales E. Hernandez E. Soderquist JA. J. Am. Chem. Soc.  2006,  128:  8712 
  • 48 González AZ. Román JG. Alicea E. Canales E. Soderquist JA. J. Am. Chem. Soc.  2009,  131:  1269 
  • 49 Muñoz-Hernández L. Soderquist JA. Org. Lett.  2009,  11:  2571 
  • 50 Hoffmann RW. Eichler G. Endesfelder A. Liebigs Ann. Chem.  1983,  2000 
  • 51 Hoffmann RW. Endesfelder A. Liebigs Ann. Chem.  1986,  1823 
  • 52 Hoffmann RW. Endesfelder A. Liebigs Ann. Chem.  1987,  215 
  • 53 Wuts PGM. Jung Y.-W. Tetrahedron Lett.  1986,  27:  2079 
  • 54 Wuts PGM. Jung Y.-W. J. Org. Chem.  1991,  56:  365 
  • For reviews on the Peterson olefination, see:
  • 55a Ager DJ. Org. React.  1990,  38:  1 
  • 55b van Staden LF. Gravestock D. Ager DJ. Chem. Soc. Rev.  2002,  31:  195 
  • 56a Roush WR. Hoong LK. Palmer MAJ. Park JC. J. Org. Chem.  1990,  55:  4109 
  • 56b Roush WR. Hoong LK. Palmer MAJ. Straub JA. Palkowitz AD. J. Org. Chem.  1990,  55:  4117 
  • 57 Itsuno S. Watanabe K. Ito K. El-Shehawy AA. Sarhan AA. Angew. Chem. Int. Ed.  1997,  36:  109 ; Angew. Chem. 1997, 109, 105
  • 58 Itsuno S. Watanabe K. Matsumoto T. Kuroda S. Yokoi A. El-Shehawy A. J. Chem. Soc., Perkin Trans. 1  1999,  2011 
  • 59 Itsuno S. Watanabe K. El-Shehawy AA. Adv. Synth. Catal.  2001,  343:  89 
  • 60 Chataigner I. Zammattio F. Lebreton J. Villiéras J. Synlett  1998,  275 
  • 61 Nyzam V. Belaud C. Villiéras J. Tetrahedron Lett.  1993,  34:  6899 
  • 62 Chataigner I. Zammattio F. Lebreton J. Villiéras J. Tetrahedron  2008,  64:  2441 
  • 63 Sugiura M. Hirano K. Kobayashi S. J. Am. Chem. Soc.  2004,  126:  7182 
  • 64 Kobayashi S. Hirano K. Sugiura M. Chem. Commun.  2005,  104 
  • 65 Sugiura M. Mori C. Hirano K. Kobayashi S. Can. J. Chem.  2005,  83:  937 
  • 66 Elford TG. Hall DG. Tetrahedron Lett.  2008,  49:  6995 
  • 67 Elford TG. Ulaczyk-Lesanko A. De Pascale G. Wright GD. Hall DG. J. Comb. Chem.  2009,  11:  155 
  • 68 Dhudshia B. Tiburcio J. Thadani AN. Chem. Commun.  2005,  5551 
  • 69 Sieber JD. Morken JP. J. Am. Chem. Soc.  2006,  128:  74 
  • 70 Pelz NF. Woodward AR. Burks HE. Sieber JD. Morken JP. J. Am. Chem. Soc.  2004,  126:  16328 
  • 71 Wu TR. Chong JM. J. Am. Chem. Soc.  2006,  128:  9646 
  • 72 Lou S. Moquist PN. Schaus SE. J. Am. Chem. Soc.  2007,  129:  15398 
  • 73 Lou S. Moquist PN. Schaus SE. J. Am. Chem. Soc.  2006,  128:  12660 
  • 74 Paton RS. Goodman JM. Pellegrinet SC. Org. Lett.  2009,  11:  37 
  • 75a Selander N. Kipke A. Sebelius S. Szabó KJ. J. Am. Chem. Soc.  2007,  129:  13723 
  • 75b Selander N. Szabó KJ. Dalton Trans.  2009,  6267 
  • For reviews of organotrifluoroborates and other leading references, see:
  • 76a Molander GA. Ellis N. Acc. Chem. Res.  2007,  40:  275 
  • 76b Stefani HA. Cella R. Vieira AS. Tetrahedron  2007,  63:  3623 
  • 76c Darses S. Genêt J.-P. Chem. Rev.  2008,  108:  288 
  • 77a Batey RA. Thadani AN. Smil DV. Tetrahedron Lett.  1999,  40:  4289 
  • 77b Batey RA. Thadani AN. Smil DV. Lough AJ. Synthesis  2000,  990 
  • 77c Thadani AN. Batey RA. Org. Lett.  2002,  4:  3827 
  • 77d Thadani AN. Batey RA. Tetrahedron Lett.  2003,  44:  8051 
  • 77e Nowrouzi F. Thadani AN. Batey RA. Org. Lett.  2009,  11:  2631 
  • 77f Nowrouzi F. Janetzko J. Batey RA. Org. Lett.  2010,  12:  5490 
  • 78 Li S.-W. Batey RA. Chem. Commun.  2004,  1382 
  • For reviews, see:
  • 79a Batey RA. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine   Hall DG. Wiley-VCH; Weinheim: 2005.  p.279 
  • 79b Petasis NA. In Multicomponent Reactions   Zhu J. Bienaymé H. Wiley-VCH; Weinheim: 2005.  p.199 
  • 79c Candeias NR. Montalbano F. Cal PMSD. Gois PMP. Chem. Rev.  2010,  110:  6169 
  • 80 Tremblay-Morin J.-P. Raeppel S. Gaudette F. Tetrahedron Lett.  2004,  45:  3471 
  • 81 For an alternative review, see: Yoo W.-J. Li C.-J. ChemSusChem  2009,  2:  205 
  • 82 Wada R. Shibuguchi T. Makino S. Oisaki K. Kanai M. Shibasaki M. J. Am. Chem. Soc.  2006,  128:  7687 
  • 83 Nicolaou KC. Mathison CJN. Montagnon T. J. Am. Chem. Soc.  2004,  126:  5192 
  • 84 Kanai M. Wada R. Shibuguchi T. Shibasaki M. Pure Appl. Chem.  2008,  80:  1055 
  • 85 Schneider U. Chen I. Kobayashi S. Org. Lett.  2008,  10:  737 
  • 86 Kobayashi S. Konishi H. Schneider U. Chem. Commun.  2008,  2313 
  • 87 Chakrabarti A. Konishi H. Yamaguchi M. Schneider U. Kobayashi S. Angew. Chem. Int. Ed.  2010,  49:  1838 ; Angew. Chem. 2010, 122, 1882
  • 88 Barker TJ. Jarvo ER. Org. Lett.  2009,  11:  1047 
  • 89 Sebelius S. Wallner OA. Szabó KJ. Org. Lett.  2003,  5:  3065 
  • 90 Sebelius S. Szabó KJ. Eur. J. Org. Chem.  2005,  2539 
  • 91 Solin N. Wallner OA. Szabó KJ. Org. Lett.  2005,  7:  689 
  • 92 For a review of the work in the Szabó group involving palladium-pincer complexes, see: Szabó KJ. Synlett  2006,  811 
  • 93 Wallner OA. Szabó KJ. Chem. Eur. J.  2006,  12:  6976 
  • 94 Aydin J. Jumar JS. Sayah MJ. Wallner OA. Szabó KJ. J. Org. Chem.  2007,  72:  4689 
  • 95 Fujita M. Nagano T. Schneider U. Hamada T. Ogawa C. Kobayashi S. J. Am. Chem. Soc.  2008,  130:  2914 
  • For some examples, see:
  • 96a Song Y. Oakamoto S. Sato F. Tetrahedron Lett.  2002,  43:  8635 
  • 96b Kumareswaran R. Gallucci J. RajanBabu TV. J. Org. Chem.  2004,  69:  9151 
  • 96c Kaden S. Brockmann M. Reissig H.-U. Helv. Chim. Acta  2005,  88:  1826 
  • 96d Ferreira F. Botuha C. Chemla F. Peréz-Luna A. J. Org. Chem.  2009,  74:  2238 
  • 97a Moreau JL. In The Chemistry of Ketenes, Allenes, and Related Compounds, Part 1   Patai S. John Wiley & Sons; New York: 1980.  p.363 
  • 97b Yamamoto H. In Comprehensive Organic Synthesis: Addition to C-X π Bonds Part II   Trost BM. Fleming I. Pergamon Press; Oxford: 1991.  p.81 
  • 97c Epsztein R. In Comprehensive Carbanion Chemistry   Buncel E. Durst T. Wiley; New York: 1980.  p.107 
  • 97d Brandsma L. Verkruijsee HD. Synthesis of Acetylenes, Allenes and Cumelenes   Elsevier; Amsterdam: 1981. 
  • 98 Brown HC. Khire UR. Narla G. Racherla US. J. Org. Chem.  1995,  60:  544 
  • 99 Gonzalez AZ. Soderquist JA. Org. Lett.  2007,  9:  1081 
  • 100 For further details on this reaction, see: Canales E. Gonzalez AZ. Soderquist JA. Angew. Chem. Int. Ed.  2007,  46:  397 ; Angew. Chem. 2007, 119, 401
  • 101 Matteson DS. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine   Hall DG. Wiley-VCH; Weinheim: 2005.  p.305 
  • 102 Kobayashi S. Kitanosono T. Ueno M. Synlett  2010,  2033 
  • 103 Fandrick DR. Johnson CS. Fandrick KR. Reeves JT. Tan Z. Lee H. Song JJ. Yee NK. Senanayake C. Org. Lett.  2010,  12:  748 
12

Boat-like transition state models 17 and 20 are shown in different conformations to the models shown in ref. 11 out of clarity. Enantiomeric transition states are not shown.