Subscribe to RSS
DOI: 10.1055/s-0030-1247862
© Georg Thieme Verlag KG Stuttgart · New York
HDL im Rahmen der Atherogenese und HDL-Steigerung durch CETP-Inhibition
HDL and CETP in atherogenesisPublication History
eingereicht: 14.8.2009
akzeptiert: 5.11.2009
Publication Date:
15 January 2010 (online)

Zusammenfassung
Auch bei leitliniengerechter Behandlung erhöhter „Low Density Lipoprotein” (LDL)-Cholesterin-Konzentrationen können zahlreiche kardiovaskuläre Ereignisse nicht verhindert werden. Ein möglicher Ansatz zur Senkung des verbleibenden Risikos ist die medikamentöse Steigerung des „High Density Lipoprotein” (HDL)-Cholesterins. Epidemiologische Studien zeigen, dass die HDL-Konzentration im Plasma invers mit dem Auftreten kardiovaskulärer Ereignisse korreliert. Unter physiologischen Bedingungen vermittelt HDL den reversen Cholesterintransport und ist vaskuloprotektiv. Neue Studien weisen jedoch darauf hin, dass HDL-Partikel unter pathophysiologischen Umständen auch Atherosklerose begünstigen könnten. Interventionsstudien und Meta-Analysen, die den Effekt einer medikamentösen HDL-Steigerung auf das kardiovaskuläre Risiko untersuchten, zeigen bislang keine eindeutigen Ergebnisse.
Die Hemmung des Cholesterylester-Transferproteins (CETP) ist eine neue Strategie zur Erhöhung der HDL-Konzentration. Die Therapie mit dem CETP-Hemmer Torcetrapib erhöhte die HDL-Konzentration zwar wesentlich, hatte jedoch auch einen substanzspezifischen Blutdruckanstieg zur Folge, der mit vermehrten klinischen Ereignissen einherging. Diese Effekte sind für die neueren CETP-Hemmer wie Dalcetrapib und Anacetrapib nicht bekannt und werden auch bei der genetischen CETP-Defizienz nicht beobachtet. Eine Steigerung der HDL-Plasmakonzentration muss nicht automatisch eine Verbesserung der HDL-Funktion und einen effektiven Cholesterinrücktransport bedeuten. Eine wichtige offene Frage bleibt daher die funktionelle Charakterisierung der unter CETP-Modulation generierten HDL-Partikel und die Evaluation der biliären Cholesterinausscheidung. Laufende klinische Studien (z. B. Dal-Heart) mit den neueren CETP-Hemmern werden zeigen, ob eine Erhöhung der HDL-Konzentration durch eine CETP-Hemmung kardiovaskuläre Ereignisse reduziert.
Abstract
Despite optimal treatment of high low density lipoprotein (LDL) cholesterol with statins many cardiovascular events are not prevented. Additional therapeutic strategies are required to reduce the residual cardiovascular risk. Large epidemiological studies show an inverse correlation between the plasma concentration of high density lipoprotein (HDL) cholesterol and the incidence of cardiovascular events. Under physiological conditions, HDL is vasculoprotective and mediates the reverse cholesterol transport. However, new studies suggest that HDL particles represent a heterogeneous population. Under several pathophysiological conditions, HDL was shown to promote atherogenesis and inflammation. Interventional studies and metaanalyses examining the effect of increasing HDL cholesterol have reported mixed results. Inhibition of cholesteryl ester transfer protein (CETP) is a new and potent strategy to increase HDL concentrations. However, the first CETP-inhibitor torcetrapib increased blood-pressure and increased cardiovascular events despite increasing HDL. The blood-pressure increasing effects are not known for more recently developed CETP inhibitors such as dalcetrapib and anacetrapib nor in patients with genetic CETP deficiency. An increase of HDL cholesterol does not necessarily imply an improvement of the functional properties of HDL such as reverse cholesterol transport. An important open question remains the functional characterization of HDL generated by CETP inhibition. Important current clinical endpoint studies with new CETP inhibitors will elucidate whether increasing HDL by CETP inhibition leads to a reduction of cardiovascular events.
Schlüsselwörter
Lipidstoffwechsel - HDL - CETP - Statine
Keywords
lipid metabolism - HDL - CETP - statins
Literatur
- 1
Clofibrate and niacin
in coronary heart disease.
JAMA.
1975;
231
360-381
MissingFormLabel
- 2
Third Report of the National Cholesterol
Education Program (NCEP) Expert Panel on Detection, Evaluation,
and Treatment of High Blood Cholesterol in Adults (Adult Treatment
Panel III) final report.
Circulation.
2002;
106
3143-3421
MissingFormLabel
- 3
Assmann G, Schulte H.
The Prospective Cardiovascular
Munster (PROCAM) study: prevalence of hyperlipidemia in persons
with hypertension and/or diabetes mellitus and the relationship
to coronary heart disease.
Am Heart J.
1988;
116
1713-1724
MissingFormLabel
- 4
Barter P J, Caulfield M, Eriksson M. et al .
Effects of torcetrapib in patients at high
risk for coronary events.
N Engl J Med.
2007;
357
2109-2122
MissingFormLabel
- 5
Bloomfield D, Carlson G L, Sapre A. et al .
Efficacy and safety of the cholesteryl
ester transfer protein inhibitor anacetrapib as monotherapy and coadministered
with atorvastatin in dyslipidemic patients.
Am Heart J.
2009;
157
352-360
e352
MissingFormLabel
- 6
Bots M L, Visseren F L, Evans G W. et al .
Torcetrapib and carotid
intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study):
a randomised, double-blind trial.
Lancet.
2007;
370
153-160
MissingFormLabel
- 7
Briel M, Ferreira-Gonzalez I, You J J. et al .
Association between change in high density
lipoprotein cholesterol and cardiovascular disease morbidity and
mortality: systematic review and meta-regression analysis.
BMJ.
2009;
338
b92
MissingFormLabel
- 8
Brousseau M E, Schaefer E J, Wolfe M L. et al .
Effects of an inhibitor
of cholesteryl ester transfer protein on HDL cholesterol.
N
Engl J Med.
2004;
350
1505-1515
MissingFormLabel
- 9
Brown B G, Zhao X Q, Chait A. et al .
Simvastatin and niacin, antioxidant vitamins,
or the combination for the prevention of coronary disease.
N Engl
J Med.
2001;
345
1583-1592
MissingFormLabel
- 10
Canner P L, Berge K G, Wenger N K. et al .
Fifteen year mortality in
Coronary Drug Project patients: long-term benefit with niacin.
J Am Coll Cardiol.
1986;
8
1245-1255
MissingFormLabel
- 11
Clark R W, Ruggeri R B, Cunningham D, Bamberger M J.
Description
of the torcetrapib series of cholesteryl ester transfer protein
inhibitors, including mechanism of action.
J Lipid Res.
2006;
47
537-552
MissingFormLabel
- 12
Curb J D, Abbott R D, Rodriguez B L. et al .
A prospective study of HDL-C
and cholesteryl ester transfer protein gene mutations and the risk
of coronary heart disease in the elderly.
J Lipid Res.
2004;
45
948-953
MissingFormLabel
- 13
Davidson M H, McKenney J M, Shear C L.
Efficacy and safety of torcetrapib,
a novel cholesteryl ester transfer protein inhibitor, in individuals with
below-average high-density lipoprotein cholesterol levels.
J
Am Coll Cardiol.
2006;
48
1774-1781
MissingFormLabel
- 14
de Grooth G J, Kuivenhoven J A, Stalenhoef A F. et al .
Efficacy and safety
of a novel cholesteryl ester transfer protein inhibitor, JTT-705,
in humans: a randomized phase II dose-response study.
Circulation.
2002;
105
2159-2165
MissingFormLabel
- 15
Fogelman A M.
When good cholesterol goes bad.
Nat Med.
2004;
10
902-903
MissingFormLabel
- 16
Forrest M J, Bloomfield D, Briscoe R J. et al .
Torcetrapib-induced blood pressure
elevation is independent of CETP inhibition and is accompanied by
increased circulating levels of aldosterone.
Br J Pharmacol.
2008;
154
1465-1473
MissingFormLabel
- 17
Frick M H, Elo O, Haapa K. et
al .
Helsinki Heart Study: primary-prevention trial
with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment,
changes in risk factors, and incidence of coronary heart disease.
N Engl J Med.
1987;
317
1237-1245
MissingFormLabel
- 18
Fruchart J C.
Peroxisome proliferator-activated receptor-alpha activation and
high-density lipoprotein metabolism.
Am J Cardiol.
2001;
88
24N-29N
MissingFormLabel
- 19
Gohlke H, Kubler W, Mathes P. et al .
[Position paper on the primary
prevention of cardiovascular diseases. Current position of the 25.3.2003 Statement
of the Board of the German Society of Cardiology – heart
and circulatory research work commissioned by for the board by Project Group
on Prevention].
Z Kardiol.
2005;
94 Suppl 2
III/113-115
MissingFormLabel
- 20
Gordon T, Castelli W P, Hjortland M C, Kannel W B, Dawber T R.
High density
lipoprotein as a protective factor against coronary heart disease.
The Framingham Study.
Am J Med.
1977;
62
707-714
MissingFormLabel
- 21
Graham I, Atar D, Borch-Johnsen K. et al .
European guidelines on cardiovascular disease
prevention in clinical practice: executive summary.
Eur
Heart J.
2007;
28
2375-2414
MissingFormLabel
- 22
Hayek T, Masucci-Magoulas L, Jiang X. et al .
Decreased early atherosclerotic lesions
in hypertriglyceridemic mice expressing cholesteryl ester transfer
protein transgene.
J Clin Invest.
1995;
96
2071-2074
MissingFormLabel
- 23
Hedrick C C, Thorpe S R, Fu M X. et al .
Glycation impairs high-density
lipoprotein function.
Diabetologia.
2000;
43
312-320
MissingFormLabel
- 24
Hirano K, Yamashita S, Nakajima N. et al .
Genetic cholesteryl ester transfer protein
deficiency is extremely frequent in the Omagari area of Japan. Marked
hyperalphalipoproteinemia caused by CETP gene mutation is not associated
with longevity.
Arterioscler Thromb Vasc Biol.
1997;
17
1053-1059
MissingFormLabel
- 25
Ishigami M, Yamashita S, Sakai N. et al .
Large and cholesteryl ester-rich high-density
lipoproteins in cholesteryl ester transfer protein (CETP) deficiency
can not protect macrophages from cholesterol accumulation induced
by acetylated low-density lipoproteins.
J Biochem.
1994;
116
257-262
MissingFormLabel
- 26
Kastelein J J, van Leuven S I, Burgess L. et al .
Effect of torcetrapib on
carotid atherosclerosis in familial hypercholesterolemia.
N
Engl J Med.
2007;
356
1620-1630
MissingFormLabel
- 27
Krishna R, Anderson M S, Bergman A J. et al .
Effect of the cholesteryl
ester transfer protein inhibitor, anacetrapib, on lipoproteins in
patients with dyslipidaemia and on 24-h ambulatory blood pressure
in healthy individuals: two double-blind, randomised placebo-controlled
phase I studies.
Lancet.
2007;
370
1907-1914
MissingFormLabel
- 28
Manninen V, Elo M O, Frick M H. et al .
Lipid alterations and decline
in the incidence of coronary heart disease in the Helsinki Heart
Study.
JAMA.
1988;
260
641-651
MissingFormLabel
- 29
Millar J S, Brousseau M E, Diffenderfer M R. et al .
Effects of the
cholesteryl ester transfer protein inhibitor torcetrapib on apolipoprotein
B100 metabolism in humans.
Arterioscler Thromb Vasc Biol.
2006;
26
1350-1356
MissingFormLabel
- 30
Mineo C, Deguchi H, Griffin J H, Shaul P W.
Endothelial
and antithrombotic actions of HDL.
Circ Res.
2006;
98
1352-1364
MissingFormLabel
- 31
Navab M, Ananthramaiah G M, Reddy S T. et al .
The double jeopardy of HDL.
Ann Med.
2005;
37
173-178
MissingFormLabel
- 32
Navab M, Hama S Y, Hough G P. et al .
A cell-free assay for detecting HDL that
is dysfunctional in preventing the formation of or inactivating
oxidized phospholipids.
J Lipid Res.
2001;
42
1308-1317
MissingFormLabel
- 33
Negre-Salvayre A, Dousset N, Ferretti G. et al .
Antioxidant and cytoprotective properties
of high-density lipoproteins in vascular cells.
Free Radic Biol
Med.
2006;
41
1031-1040
MissingFormLabel
- 34
Nissen S E, Tardif J C, Nicholls S J. et al .
Effect of torcetrapib on
the progression of coronary atherosclerosis.
N Engl J
Med.
2007;
356
1304-1316
MissingFormLabel
- 35
Nissen S E, Tsunoda T, Tuzcu E M. et al .
Effect of recombinant ApoA-I Milano on
coronary atherosclerosis in patients with acute coronary syndromes:
a randomized controlled trial.
JAMA.
2003;
290
2292-2300
MissingFormLabel
- 36 Parhofer S. Handbuch der Fettstoffwechselstörungen. 3., vollständig überarbeitete
und erweiterte Auflage. Schattauer Verlag
MissingFormLabel
- 37
Plump A S, Masucci-Magoulas L, Bruce C. et al .
Increased atherosclerosis in ApoE and LDL
receptor gene knock-out mice as a result of human cholesteryl ester
transfer protein transgene expression.
Arterioscler Thromb
Vasc Biol.
1999;
19
1105-1110
MissingFormLabel
- 38
Robins S J, Collins D, Wittes J T. et al .
Relation of gemfibrozil treatment and lipid
levels with major coronary events: VA-HIT: a randomized controlled
trial.
JAMA.
2001;
285
1585-1591
MissingFormLabel
- 39
Rohrer L, Hersberger M, von Eckardstein A.
High density lipoproteins in the intersection of diabetes mellitus,
inflammation and cardiovascular disease.
Curr Opin Lipidol.
2004;
15
269-278
MissingFormLabel
- 40
Rubins H B, Robins S J, Collins D. et al .
Gemfibrozil for the secondary prevention
of coronary heart disease in men with low levels of high-density
lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol
Intervention Trial Study Group.
N Engl J Med.
1999;
341
410-418
MissingFormLabel
- 41
Sirtori C R, Fumagalli R.
LDL-cholesterol lowering
or HDL-cholesterol raising for cardiovascular prevention. A lesson
from cholesterol turnover studies and others.
Atherosclerosis.
2006;
186
1-11
MissingFormLabel
- 42
Stein E A, Stroes E S, Steiner G. et al .
Safety and tolerability of dalcetrapib.
Am J Cardiol.
2009;
104
82-91
MissingFormLabel
- 43
Thompson A, Di Angelantonio E, Sarwar N. et al .
Association of cholesteryl ester transfer
protein genotypes with CETP mass and activity, lipid levels, and
coronary risk.
JAMA.
2008;
299
2777-2788
MissingFormLabel
- 44
Zhong S, Sharp D S, Grove J S. et al .
Increased coronary heart disease in Japanese-American
men with mutation in the cholesteryl ester transfer protein gene
despite increased HDL levels.
J Clin Invest.
1996;
97
2917-2923
MissingFormLabel
- 45
Forrester J S, Makkar R, Shah P K.
Increasing high-density lipoprotein cholesterol in dyslipidemia
by cholesteryl ester transfer protein inhibition: an update for
clinicians.
Circulation.
2005;
111
1847-1854
MissingFormLabel
Dr. med. Janine Pöss
Klinik für Innere Medizin III, Kardiologie,
Angiologie und Internistische Intensivmedizin, Universitätsklinikum
des Saarlandes
66424 Homburg/Saar
Phone: 06841/1623436
Fax: 06841/1623434
Email: janine.poess@gmx.de