Synlett 2010(4): 539-542  
DOI: 10.1055/s-0029-1219372
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Intermediates for the Synthesis of 4-Substituted Proline Derivatives

Stuart R. Crosbya, Richard B. Sessionsb, Christine L. Willis*a
a School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK
Fax: 44(117)9298611; e-Mail: chris.willis@bristol.ac.uk;
b Department of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
Further Information

Publication History

Received 9 January 2010
Publication Date:
10 February 2010 (online)

Abstract

A chemoenzymatic synthesis of a series of 2-hydroxy-5-nitro-4-substituted esters is described that uses two biotransformations in a single-pot process in which a kinetic resolution/reduction occurs. The products are valuable intermediates for the preparation of 4-substituted prolines and 5-substituted 3-hydroxypiperidinones as illustrated by the preparation of (2R,4R)-4-methylproline and (3S,5R)-3-hydroxy-5-methylpiperidinone.

    References and Notes

  • 1 Hulme AC. Arthington W. Nature  1952,  170:  659 
  • 2 Hoeksema H. Bannister B. Birkenmeyer RD. Kagan F. Magerlein BJ. MacKellar FA. Schroeder W. Slomp G. Herr RR. J. Am. Chem. Soc.  1964,  86:  4223 
  • 3 Krapcho J. Turk C. Cushman DW. Powell JR. DeForrest JM. Spitzmiller ER. Karanewsky D. Duggan M. Rovnyak G. J. Med. Chem.  1988,  31:  1148 
  • See for example:
  • 4a Murphy AC. Mitova MI. Blunt JW. Munro MHG. J. Nat. Prod.  2008,  71:  806 
  • 4b Thottahill JF. Moniot JL. Mueller RH. Wong MKY. Kissick TP. J. Org. Chem.  1986,  51:  3140 
  • 4c Moody CM. Young DW. Tetrahedron Lett.  1994,  35:  7277 
  • 4d Del Valle JR. Goodman M. J. Org. Chem.  2003,  68:  3923 
  • 4e Heindl C. Hübner H. Gmeiner P. Tetrahedron: Asymmetry  2003,  14:  3153 
  • 5 Crosby SR. Hateley MJ. Willis CL. Tetrahedron Lett.  2000,  41:  397 
  • 6 Shaked Z. Whitesides GM. J. Am. Chem. Soc.  1980,  102:  7104 
  • 7 Dalby JS. Kenner GW. Sheppard RC. J. Chem. Soc.  1962,  4387 
  • 10 Wassermann HH. Ho W.-B. J. Org. Chem.  1994,  59:  4364 
  • 11 For a general procedure for conducting the biotransforma-tions, see: Sutherland A. Willis CL. J. Org. Chem.  1998,  63:  7764 
  • 12 Alvarez JA. Gelpi JL. Johnsen K. Bernard N. Delcour J. Clarke AR. Holbrook JJ. Cortés A. Eur. J. Biochem.  1997,  244:  203 
  • 13 Bernard N. Johnsen K. Gelpi JL. Alvarez JA. Ferain T. Garmyn D. Hols P. Cortés A. Clarke AR. Holbrook JJ. Delcour J. Eur. J. Biochem.  1997,  244:  213 
  • 14 Clare JE. Willis CL. Yuen J. Lawrie KWM. Charmant JPH. Kantacha A. Tetrahedron Lett.  2003,  44:  8153 
8

Piperidinone 12: white solid; mp 149 ˚C (MeOH); [α]D +10.6 (c 0.5, MeOH); IR (Nujol): 3336, 2929, 1755, 1290 cm; ¹H NMR (300 MHz, D2O): δ = 1.03 (d, J = 6.5 Hz, 3 H, 5-CH3), 1.53 (q, J = 12.6 Hz, 1 H, 4-Hax), 2.12-2.20 (m, 3 H, OH, 5-H and 4-Heq), 3.22 (dd, J = 11.0, 8.5 Hz, 1 H, 6-HH), 3.31 (ddd, J = 11.0, 5.6, 2.0 Hz, 1 H, 6-HH), 4.26 (dd, J = 12.6, 5.9 Hz, 1 H, 3-H); ¹³C NMR (75 MHz, CD3OD): δ = 19.1, 28.8, 39.2, 50.0, 68.5 (C-3), 175.6 (C-2); MS (CI): m/z [MH]+ calcd for C9H12NO2: 130.0865; found: 130.0868.
Tosylate 10: yellow oil; [α]D -19.5 (c 1.0, CHCl3); IR (film): 2959, 1763, 1598, 1555, 1438, 1376 cm; ¹H NMR (300 MHz, CDCl3): δ = 1.05 (d, J = 7.0 Hz, 3 H, 4-CH3), 1.89-1.96 (m, 2 H, 3-H2), 2.38 (s, 3 H, CH3), 3.66 (s, 3 H, OCH3), 4.26 (dd, J = 12.2, 7.3 Hz, 1 H, 4-HH), 4.33 (dd, J = 12.2, 7.3 Hz, 1 H, 4-HH), 4.96 (dd, J = 7.3, 6.0 Hz, 1 H, 2-H), 7.36 (d, J = 8.0 Hz, 2 H, ArH), 7.83 (d, J = 8.0 Hz, 2 H, ArH); ¹³C NMR (75 MHz, CDCl3): δ = 17.5, 21.6, 28.8, 35.5, 52.7, 74.9, 79.5, 128.0, 128.9, 129.8, 145.5, 168.5; MS (CI): m/z [MH]+ calcd for C14H20NO7S: 346.0960; found: 346.0964.

9

The crystal structure coordinates of a ternary complex of BS-LDH containing NADH and the substrate analogue oxamate, were taken from the protein data bank (1LDN). Oxamate was replaced in the structure by the (4R)-2-keto acid (R)-5 and the conformation of the rest of the molecule was adjusted to best dock in the remaining space in the active site. This process was repeated for the S-enantiomer [(S)-5] of the substrate. Both complexes were soaked in a 5Å layer of water and energy-minimised using DISCOVER v 2.95 and the cvff force field in SGI challenge L.