Abstract
Biomimetic and other strategies that have been developed in the
author’s laboratory for the synthesis of a subset of the group
of enzymically oxidized lipids known as oxylipins are described.
This set of oxylipins contains both a cyclopropane and a lactone,
with the lactone ring size varying between six and nine members.
A biomimetic approach employing cascade cyclization of an epoxyalkenoic
acid was successful in creating the cyclopropane and six-membered
lactone of C20 oxylipins such as the constanolactones
in a single step, but failed in an attempt to create the nine-membered
lactone of halicholactone. Solandelactones, C22 oxylipins
containing a cyclopropane and an eight-membered lactone, were synthesized
by directed Simmons-Smith cyclopropanation followed by
Claisen rearrangement of a cyclic ketene acetal to construct the
lactone
1 Introduction
2 The First Biomimetic Cascade Synthesis of an Oxylipin
3 Biomimetic Cascade Synthesis of Constanolactones A and B
4 A Failed Biomimetic Strategy for Halicholactone
5 Synthesis of the C22 Oxylipins Solandelactones
A, B, E, and F
5.1 A Ring-Closing Metathesis Approach to the Octenalactone Portion
of Solandelactones
5.2 The Petasis-Claisen Rearrangement Route to the
Octenalactone Portion of Solandelactones
6 Conclusion
Key words
biomimetic synthesis - cascade synthesis - cyclopropanation - Claisen rearrangement
- lactones - lipids
References
<A NAME="RA52208ST-1A">1a </A>
Gerwick WH.
Nagle DG.
Proteau PJ.
Top.
Curr. Chem.
1993,
167:
117
<A NAME="RA52208ST-1B">1b </A>
Gerwick WH.
Chem. Rev.
1993,
93:
1807
<A NAME="RA52208ST-2">2 </A>
Gerwick WH.
Moghaddam MF.
Hamberg M.
Arch. Biochem.
Biophys.
1991,
290:
436
<A NAME="RA52208ST-3">3 </A>
Gerwick WH.
Singh IP. In Lipid
Biotechnology
Kuo
TM.
Gardner HW.
Marcel
Dekker;
New York:
2002.
p.249-275
<A NAME="RA52208ST-4A">4a </A>
Niwa H.
Wakamatsu K.
Yamada K.
Tetrahedron Lett.
1989,
30:
4543
<A NAME="RA52208ST-4B">4b </A>
Kigoshi H.
Niwa H.
Yamada K.
Stout TJ.
Clardy J.
Tetrahedron
Lett.
1991,
32:
2427
<A NAME="RA52208ST-5">5 </A>
Higgs MD.
Mulheirn LJ.
Tetrahedron
1981,
37:
4259
<A NAME="RA52208ST-6">6 </A>
Corey EJ.
De B.
Ponder JW.
Berg JM.
Tetrahedron Lett.
1984,
25:
1015
<A NAME="RA52208ST-7">7 </A>
Corey EJ.
Matsuda SPT.
Tetrahedron
Lett.
1987,
28:
4247
<A NAME="RA52208ST-8">8 </A>
Corey EJ.
d’Alarcoa M.
Matsuda SPT.
Lansbury
PT.
Yamada Y.
J. Am.
Chem. Soc.
1987,
109:
289
<A NAME="RA52208ST-9">9 </A>
Brash AR.
J.
Am. Chem. Soc.
1989,
111:
1891
<A NAME="RA52208ST-10">10 </A>
Baertschi SW.
Brash A.
Harris TM.
J.
Am. Chem. Soc.
1989,
111:
5003
<A NAME="RA52208ST-11">11 </A>
White JD.
Jensen MS.
J. Am. Chem. Soc.
1993,
115:
2970
<A NAME="RA52208ST-12">12 </A>
Jin H.
Uenishi J.
Christ W.
Kishi Y.
J.
Am. Chem. Soc.
1986,
108:
5644
<A NAME="RA52208ST-13">13 </A>
Gao Y.
Hanson R.
Klunder J.
Ko SY.
Sharpless KB.
J.
Am. Chem. Soc.
1987,
109:
5765
<A NAME="RA52208ST-14">14 </A>
Takai K.
Nitta K.
Utimoto K.
Masamune H.
J. Am. Chem. Soc.
1986,
108:
7408
<A NAME="RA52208ST-15">15 </A>
Leusink AJ.
Budding HA.
Drenth W.
J.
Organomet. Chem.
1968,
11:
541
<A NAME="RA52208ST-16">16 </A>
Echavarren AM.
Tueting DR.
Stille JK.
J. Am. Chem. Soc.
1988,
110:
4039
<A NAME="RA52208ST-17">17 </A>
Van Tamelen EE.
Anderson RJ.
J. Am. Chem. Soc.
1972,
94:
8225
<A NAME="RA52208ST-18">18 </A>
Derome AE.
Modern NMR Techniques for Chemistry Research
Pergamon;
Oxford
UK:
1987.
p.209-220
<A NAME="RA52208ST-19">19 </A>
Ueno Y.
Okawara M.
Tetrahedron Lett.
1976,
4597
<A NAME="RA52208ST-20">20 </A>
Nagle DG.
Gerwick WH.
Tetrahedron Lett.
1990,
31:
2995
<A NAME="RA52208ST-21">21 </A>
Nagle DG.
Gerwick WH.
J. Org. Chem.
1994,
59:
7227
<A NAME="RA52208ST-22">22 </A>
White JD.
Jensen MS.
J. Am. Chem. Soc.
1995,
117:
6224
<A NAME="RA52208ST-23">23 </A>
Leblanc Y.
Fitzsimmons BJ.
Adams J.
Perez F.
Rokach J.
J.
Org. Chem.
1986,
51:
789
<A NAME="RA52208ST-24">24 </A>
Wong MYH.
Gray GR.
J.
Am. Chem. Soc.
1978,
100:
3548
<A NAME="RA52208ST-25">25 </A>
Barloy-Da Silva C.
Benkouider A.
Pale P.
Tetrahedron Lett.
2000,
41:
3077
<A NAME="RA52208ST-26">26 </A>
Yu J.
Lai J.-Y.
Ye J.
Balu N.
Reddy LM.
Duan W.
Fogel ER.
Capdevila JH.
Falck JR.
Tetrahedron
Lett.
2002,
43:
3939
<A NAME="RA52208ST-27">27 </A>
Pietruszka J.
Wilhelm T.
Synlett
2003,
1698
<A NAME="RA52208ST-28">28 </A> On constanolactones C and D, see:
Pietruszka J.
Rieche
ACM.
Schöne N.
Synlett
2007,
2525
On constanolactone E, see:
<A NAME="RA52208ST-29A">29a </A>
Miyaoka H.
Shigemoto T.
Yamada Y.
Tetrahedron
Lett.
1996,
37:
7407
<A NAME="RA52208ST-29B">29b </A>
Miyaoka H.
Shigemoto T.
Yamada Y.
Heterocycles
1998,
47:
415
<A NAME="RA52208ST-30">30 </A> A proposed revision to the absolute
configuration of neohalicholactone(54 )
was found to be in error:
Proteau PJ.
Rossi JV.
Gerwick WH.
J. Nat. Prod.
1994,
57:
1717
<A NAME="RA52208ST-31">31 </A>
White JD.
Jensen MS.
Synlett
1996,
31
<A NAME="RA52208ST-32">32 </A>
Fallis AG.
Hearn MTW.
Jones ERH.
Thaller V.
Turner JL.
J. Chem. Soc., Perkin Trans. 1
1973,
743
<A NAME="RA52208ST-33">33 </A>
Gannett PM.
Nagel DL.
Reilley PJ.
Lawson T.
Sharpe J.
Toth B.
J. Org. Chem.
1988,
53:
1064
<A NAME="RA52208ST-34">34 </A>
Takai K.
Kuroda T.
Nakatsukasa S.
Oshiwa K.
Nozaki H.
Tetrahedron
Lett.
1985,
26:
5585
<A NAME="RA52208ST-35">35 </A>
Martin GE.
Crouch RC.
J. Nat. Prod.
1991,
54:
1
<A NAME="RA52208ST-36">36 </A>
Critcher DJ.
Connolly S.
Mahon MF.
Wills M.
J. Chem. Soc., Chem.
Commun.
1995,
139
<A NAME="RA52208ST-37">37 </A>
Critcher DJ.
Connolly S.
Wills M.
Tetrahedron
Lett.
1995,
36:
3763
<A NAME="RA52208ST-38">38 </A>
Critcher DJ.
Connolly S.
Wills M.
J.
Org. Chem.
1997,
62:
6638
<A NAME="RA52208ST-39A">39a </A>
Takemoto Y.
Baba Y.
Saha G.
Nakao S.
Iwata C.
Tamaka T.
Ibuka T.
Tetrahedron
Lett.
2000,
41:
3653
<A NAME="RA52208ST-39B">39b </A>
Baba Y.
Saha G.
Nakao S.
Iwata C.
Tanaka T.
Ibuka T.
Ohishi H.
Takemoto Y.
J.
Org. Chem.
2001,
66:
81
<A NAME="RA52208ST-40">40 </A>
Takahashi T.
Watanabe H.
Kitahara T.
Heterocycles
2002,
58:
99
<A NAME="RA52208ST-41">41 </A>
Seo Y.
Cho KW.
Rho J.-R.
Shin J.
Kwon B.-M.
Bok S.-H.
Song J.-I.
Tetrahedron
1996,
52:
10583
<A NAME="RA52208ST-42">42 </A>
White JD.
Martin WHC.
Lincoln CM.
Yang J.
Org. Lett.
2007,
9:
3481
<A NAME="RA52208ST-43">43 </A>
White JD.
Lincoln CM.
Yang J.
Martin WHC.
Chan DB.
J. Org. Chem.
2008,
73:
4139
<A NAME="RA52208ST-44">44 </A>
Mohapatra D.
Yellol G.
Arkivoc
2003,
(ix):
21
<A NAME="RA52208ST-45">45 </A>
Lincoln CM.
White JD.
Yokochi AFT.
Chem. Commun.
2004,
2846
<A NAME="RA52208ST-46">46 </A>
Tamborski CM.
Ford FE.
Soloski EJ.
J. Org. Chem.
1963,
28:
237
See:
<A NAME="RA52208ST-47A">47a </A>
Nagasawa T.
Handa Y.
Onoguchi Y.
Obba S.
Suzuki K.
Synlett
1995,
739
<A NAME="RA52208ST-47B">47b </A>
Nagasawa T.
Handa Y.
Onoguchi Y.
Suzuki K.
Bull. Chem. Soc. Jpn.
1996,
69:
31
<A NAME="RA52208ST-47C">47c </A>
Taylor RE.
Engelhardt FC.
Schmitt MJ.
Yuan H.
J.
Am. Chem. Soc.
2001,
123:
2964 ;
and references cited therein
<A NAME="RA52208ST-48">48 </A>
Still WC.
Gennari C.
Tetrahedron Lett.
1983,
24:
4405
<A NAME="RA52208ST-49A">49a </A>
Guz NR.
Phillips AJ.
Org. Lett.
2002,
4:
2253
<A NAME="RA52208ST-49B">49b </A>
Crimmins MT.
King BW.
Tabet EA.
J. Am. Chem. Soc.
1997,
119:
7883
<A NAME="RA52208ST-49C">49c </A>
Crimmins MT.
King BW.
Tabet EA.
Chaudhary K.
J.
Am. Chem. Soc.
2001,
66:
894
<A NAME="RA52208ST-50">50 </A>
Oshima K.
Takai K.
Hotta Y.
Nozaki H.
Tetrahedron Lett.
1978,
2417
<A NAME="RA52208ST-51">51 </A>
An ab initio calculation using a Hartree-Fock/6-31G** basis set
places the barrier at 7-9 kcal˙mol-¹
<A NAME="RA52208ST-52">52 </A>
Charette AB.
Lebel HJ.
J. Org. Chem.
1995,
60:
2966
<A NAME="RA52208ST-53A">53a </A>
Petrzilka M.
Helv. Chim. Acta
1978,
61:
3075
<A NAME="RA52208ST-53B">53b </A>
Baudat R.
Petrzilka M.
Helv. Chim. Acta
1979,
62:
1406
<A NAME="RA52208ST-54A">54a </A>
Robinson RA.
Clark JS.
Holmes AB.
J.
Am. Chem. Soc.
1993,
115:
10400
<A NAME="RA52208ST-54B">54b </A>
Burton JW.
Clark JS.
Derrer S.
Stork TC.
Bendall JG.
Holmes AB.
J.
Am. Chem. Soc.
1997,
119:
7483
<A NAME="RA52208ST-55">55 </A>
Nagao Y.
Hagiwara Y.
Kumagai T.
Ochiai M.
Inoue T.
Hashimoto K.
Fujita E.
J. Org. Chem.
1986,
51:
2391
<A NAME="RA52208ST-56">56 </A>
Vlieghe P.
Clerc T.
Pannecouque C.
Witvrouw M.
De Clerq E.
Salles JP.
Kraus JL.
J. Med. Chem.
2001,
44:
3014
<A NAME="RA52208ST-57">57 </A>
Carling RW.
Holmes AB.
J. Chem. Soc., Chem. Commun.
1986,
325
<A NAME="RA52208ST-58">58 </A>
Petasis NA.
Bzowej EI.
J. Am. Chem. Soc.
1990,
112:
6392
<A NAME="RA52208ST-59">59 </A>
Anderson EA.
Davidson JEP.
Harrison JR.
O’Sullivan PT.
Burton JW.
Collins I.
Holmes AB.
Tetrahedron
2002,
58:
1943
<A NAME="RA52208ST-60">60 </A>
Saito S.
Hasegawa T.
Inaba M.
Nishida R.
Fujii T.
Nomizu S.
Moriwake T.
Chem.
Lett.
1984,
1389
<A NAME="RA52208ST-61">61 </A>
Bessodes M.
Komiotis D.
Autonakis K.
Tetrahedron
Lett.
1986,
27:
579
<A NAME="RA52208ST-62A">62a </A>
Davoren JE.
Martin SF.
J. Am. Chem. Soc.
2007,
129:
510
<A NAME="RA52208ST-62B">62b </A>
Davoren JE.
Harcken C.
Martin SF.
J. Org. Chem.
2008,
73:
391
<A NAME="RA52208ST-63">63 </A>
Pietruszka J.
Rieche ACM.
Adv. Synth.
Catal.
2008,
350:
1407