Subscribe to RSS
DOI: 10.1055/a-2681-5829
Charge-Enhanced Hydrogen Bond and Brønsted Acid Catalysis: An Evolving Frontier
Supported by: NSERC RGPIN2025-04511
Funding Information The authors are grateful to the Natural Sciences and Engineering Research Council (NSERC) for financial support. T.D. thanks the NSERC for Discovery Grant (RGPIN2025-04511). S.V. thanks the NSERC for PGS-D funding. N. K. thanks OGS for funding.

Abstract
In catalysis, both rate acceleration and selectivity are of central importance, and strategies to achieve these outcomes remain fundamental to advancing synthetic methodology. Over the past two decades, the merger of traditional catalytic paradigms with charge-enhancing elements has led to unprecedented reactivity in bond-forming processes with broad synthetic utility. These systems augmented by charge are increasingly attracting attention for their unique modes of activation. In particular, this review highlights and contextualizes recent advancements in charge-enhanced hydrogen bond and Brønsted acid catalysis that enable novel activation modes complementary to traditional catalytic platforms. Special emphasis is placed on catalysts such as amidinium, cyclopropenium, and azolium ions as well as cationic thiourea and phosphoric acids, whose charge-enhanced features have enabled transformative improvements in reactivity, rate acceleration, and selectivity.
Keywords
Hydrogen-bonding - Brønsted acidity - Stereoselectivity - Rate-enhancement - Cyclopropenium - Phosphoric acid - Thiourea - AmidiniumPublication History
Received: 05 June 2025
Accepted after revision: 11 August 2025
Article published online:
27 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Dreher SD. React Chem Eng 2019; 4: 1530
- 2 Hendrich CM, Sekin K, Koshikawa T, Tanaka K, Hashmi S. Chem Rev 2021; 121: 9113-9163
- 3 Qin Y, Zhu L, Luo S. Chem Rev 2017; 117: 9433-9520
- 4 Atodiresei I, Vila C, Rueping M. ACS Catal 2015; 5: 1972-1985
- 5a Rocha RP, Pereira MFR, Figueiredo JL. Catal Today 2020; 356: 189-196
- 5b Wen K, Chen J, Gao F, Bhadury PS, Fan E, Sun Z. Org Biomol Chem 2013; 11: 6350-6356
- 5c Lubaev AE, Rathnayake MD, Eze F, Bayeh-Romero L. J Am Chem Soc 2022; 144: 13294-13301
- 6 Saini K, Raigar AK, Jyoti N, Guleria A. ACS Omega 2024; 9: 8343-8351
- 7a Pawar TJ, Jimenez-Halla JOC, Martinez-Valencia DI, Kokate SV, Delgado-Alvarado E, Olivares-Romero JL. ACS Omega 2024; 9: 29035-29040
- 7b Reigel GF, Takashige K, Lovstedt A, Kass SR. J Phys Org Chem 2022; 35: e4355
- 8 Kshatriya R. ACS Omega 2023; 8: 17381-17406
- 9 Betinol IO, Kuang Y, Mulley BP, Reid JP. Chem Rev 2025; 125: 4184-4286
- 10 Wilson RM, Lambert TH. Acc Chem Res 2022; 55: 3057-3069
- 11 Squitieri RA, Fitzpatrick KP, Jaworski AA, Scheidt KA. Chem Eur J 2019; 25: 10069-10073
- 12 Samet M, Buhle J, Zhou Y, Kass SR. J Am Chem Soc 2015; 137: 4678-4680
- 13a Roy VJ, Chakraborty J, Roy SR. Org Lett 2024; 26: 183-187
- 13b Zhao Y, Cotelle Y, Liu L. et al. Acc Chem Res 2018; 51: 2255-2263
- 13c Yamada S. Chem Rev 2018; 118: 11353-11432
- 13d Tarkanyi G, Kyrali P, Varga S, Vakulya B, Soos T. Chem Eur J 2008; 14: 6078-6086
- 14 Dolling UH, Davis P, Grabowski EJJ. J Am Chem Soc 1984; 106: 446-447
- 15 Natta G, Farina M, Bressan PG. Die Makromol Chem 1961; 43: 68-75
- 16 Stark CBW, Eggert U, Hoffmann HMR. Angew Chem 1998; 37: 1266-1268
- 17 Mennen SM, Blank JT, Tran-Dubé MB, Imbriglio JE, Miller SJ. Chem Commun 2005; 195-197
- 18 Uyeda C, Jacobsen EN. J Am Chem Soc 2008; 130: 9228-9229
- 19 Zhao Y, Domoto Y, Orentas E. et al. Angew Chem Int Ed 2013; 52: 9940-9943
- 20a Dong S, Feng X, Liu X. Chem Soc Rev 2018; 47: 8525-8540
- 20b Hosaya K, Odagi M, Nagasawa K. Tetrahedron Lett 2018; 59: 687-696
- 21 Roychowdhury P, Samanta S, Tan H, Powers DC. Org Chem Front 2023; 10: 2563-2580
- 22a Rossler SL, Jelier BJ, Magnier E, Dagousset G, Carriera EM, Togni A. Angew Chem Int Ed 2019; 59: 9264-9280
- 22b Piancatelli G, Scettri A, D’Auria M. Synthesis 1982; 245-258
- 23 Dere RT, Pal RR, Patil PS, Salunkhe MM. Tetrahedron 2003; 44: 5351-5353
- 24 Bates GS, O’Doherty J. J Org Chem 1981; 46: 1745-1747
- 25a Xia W, Wang Z, Wang Q. et al. Curr Pharm Des 2009; 15: 12-19
- 25b Rossmann MG, Moras D, Olsen KW. Nature 1974; 250: 194-199
- 26 Nugent BM, Yoder RA, Johnston JN. J Am Chem Soc 2004; 126: 3466-3467
- 27a Singh A, Yoder RA, Shen B, Johnston JN. J Am Chem Soc 2007; 129: 3466-3467
- 27b Singh A, Johnston JN. J Am Chem Soc 2008; 130: 5866-5867
- 28a Belding L, Taimoory SM, Dudding T. ACS Catal 2015; 5: 343-349
- 28b Taimoory SM, Dudding T. J Org Chem 2016; 81: 3286-3295
- 28c Struble TJ, Smajlagic I, Foy H, Dudding T, Johnston JN. J Org Chem 2021; 86: 15606-15617
- 29 Deng Z, Padalio MA, Jan JEL, Park S, Danneman MW, Johnston JN. J Am Chem Soc 2024; 146: 1269-1275
- 30 Takenaka N, Sarangthem RB, Seera SK. Org Lett 2007; 9: 2819-2822
- 31 Chen J, Captain B, Sarangthem RS, Chandrakumar A, Takenaka N. J Am Chem Soc 2010; 132: 4536-4537
- 32 Saini MK, Korawat HS, Verma SK, Basak AK. Tetrahedron Lett 2020; 61: 152657
- 33 Li X, Kong X, Yang S. et al. Org Lett 2019; 21: 1979-1983
- 34 Kumar GR, Ramesh B, Yarlagadda S, Sridhar B, Subba Reddy BV. ACS Omega 2019; 4: 2168-2177
- 35 Berkessel A, Roland K, Neudorfl JM. Org Lett 2006; 19: 4195-4198
- 36 Menche D, Arikan F. Synlett 2006; 6: 0841-0844
- 37 Ganesh M, Seidel D. J Am Chem Soc 2008; 130: 16464-16465
- 38 Herrera RP, Sgarzani V, Bernardi L, Ricci A. Angew Chem Int Ed 2005; 44: 6576-6579
- 39 Fan Y, Kass S. Org Lett 2016; 18: 188-191
- 40 Reigel GF, Payne C, Kass SR. J Phys Org Chem 2022; 35: e4321
- 41 Fan Y, Kass S. J Org Chem 2017; 82: 13288-13296
- 42 Blechschmidt DR, Mergendahl C, Kass S. Org Biomol Chem 2024; 22: 1788-1793
- 43 Smajlagic I, Duran R, Pilkington M, Dudding T. J Org Chem 2018; 83: 13973-13980
- 44 Smajlagic I, Guest M, Durán Herrera B, Dudding T. J Org Chem 2020; 85: 585-593
- 45a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew Chem Int Ed 2004; 43: 1566
- 45b Uraguchi D, Terada M. J Am Chem Soc 2004; 126: 5365
- 46 Parmar D, Sugiono E, Raja S, Rueping M. Chem Rev 2014; 114: 9047-9153
- 47a Akiyama T. Chem Rev 2007; 107: 5744-5758
- 47b Rueping M, Kuenkel A, Atodierssei I. Chem Soc Rev 2011; 40: 4359-4359
- 47c Akiyama T, Itoh J, Fuchibe K. Adv Synth Catal 2006; 348: 999-1010
- 48 Kaupmees K, Tolstoluzhsky N, Raja S, Rueping M, Leito L. Angew Chem Int Ed 2013; 52: 11569-11572
- 49 Samet M, Buhle J, Zhou YW, Kass SR. J Am Chem Soc 2015; 137: 4678-4680
- 50 Ma J, Kass SR. Org Lett 2016; 18: 5812-5815
- 51 Betinol IO, Kuang Y, Mulley BP, Reid JP. Chem Rev 2025; 125: 4184-4286
- 52 Nishikawa Y, Nakano S, Tahiraa Y. et al. Org Lett 2016; 18: 2004-2007
- 53 Ma J, Kass SR. Org Lett 2018; 20: 2689-2692
- 54 Ma J, Kass SR. J Org Chem 2019; 84: 11125-11134
- 55a Hardee DJ, KovalChuke L, Lambert TH. J Am Chem Soc 2010; 132: 5002-5003
- 55b Srivastava VP, Patel R. Yadav LDS. Chem Commun 2010; 46: 5808-5810
- 55c Vanos CM, Lambert TH. Chem Sci 2010; 1: 705-708
- 55d Bandar JS, Lambert TH. Synthesis 2013; 45: 2485-2498
- 55e Bandar JS, Tanaset A, Lambert TH. Chem Eur J 2015; 21: 7365-7368
- 55f Belding L, Stoyanov P, Dudding T. J Org Chem 2016; 81: 553-558
- 56 Weiss R, Brenner T, Hampel F, Wolski A. Angew Chem Int Ed Engl 1995; 34: 439-441
- 57 Xu J, Xian A, Li Z. et al. J Org Chem 2021; 86: 3422-3432
- 58 Mirabdolbaghi R, Dudding T, Stamatatos T. Org Lett 2014; 16: 2790-2793
- 59 Mirabdolbaghi R, Dudding T. Org Lett 2015; 17: 1930-1933
- 60 Mir R, Dudding T. J Org Chem 2017; 82: 709-714
- 61 Dempsey K, Mir R, Smajlagic I, Dudding T. Tetrahedron 2018; 74: 3507-3511
- 62 Smajlagic I, White B, Azeez O, Pilkington M, Dudding T. ACS Catal 2022; 12: 1128-1138
- 63 Xu J, Liu J, Li Z. et al. Polym Chem 2018; 9: 2183-2192
- 64a Kelly BD, Lambert TH. Org Lett 2011; 13: 740-743
- 64b Bandar JS, Lambert TH. J Am Chem Soc 2012; 134: 5552-5555
- 64c Huang H, Strater ZM, Rauch M. et al. Angew Chem, Int Ed 2019; 58: 13318-13322
- 64d Ranga PK, Ahmad F, Singh G, Tyagi A, Vijaya Anand R. Org Biomol Chem 2021; 19: 9541-9564
- 65 Ranga PK, Ahmad F, Nager P, Rana PS, Anand RV. J Org Chem 2021; 86: 4994-5010
- 66 Lutter FH, Grokenberger L, Perego LA. et al. Nat Commun 2020; 11: 4443
- 67 Joseph MC, Swarts AJ, Mapolie SF. Coord Chem Rev 2023; 493: 215317
- 68 Soeta T, Mizuno S, Hatanaka Y, Ukaji Y. Tetrahedron 2017; 73: 3430-3437
- 69 He J, Ghosh P, Nitsche C. Chem Sci 2024; 15: 2300-2322
- 70 Hua Y, Flood AH. Chem Soc Rev 2010; 39: 1262-1271
- 71 Kharb R, Sharma PC, Yar MS. J Enzyme Inhib Med Chem 2011; 26: 1-21
- 72 Ohmatsu K, Kiyokawa M, Ooi T. J Am Chem Soc 2011; 5: 1307-1309
- 73 Ohmatsu K, Morita Y, Kiyokawa M, Ooi T. J Am Chem Soc 2021; 143: 11218-11224
- 74 Narumi T, Tsuzuki S, Tamamura H. Asian J Org Chem 2014; 3: 497-503
- 75 Wang X, Aldrich CC. PLoS One. 2019 14.
- 76 Afzali M, Popichek K, Burton L. et al. Mol Immunol 2018; 101: 46-54
- 77 Caspar Y, Jeanty M, Blu J. et al. J Antimicrob Chemother 2015; 70: 1727-1737
- 78 Gul W, Hamann M. Life Sci 2005; 78: 442-453