Subscribe to RSS
DOI: 10.1055/a-2657-1791
Ring-Opening Metathesis of Benzene Induced by Rare-Earth Metallacycles
This work was supported by the National Key R&D Program of China (no. 2021YFF0701600), National Natural Science Foundation of China (nos. 22371006, 22131001, 21725201, 21890721) and Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-202401).
Supported by: National Natural Science Foundation of China 21725201,21890721,22131001,22371006
Supported by: Beijing National Laboratory for Molecular Sciences BNLMS-CXXM-202401

Abstract
Activation of inert C–C bonds in arenes remains a formidable challenge in synthetic chemistry. Despite advances in arene C–C bond activation, metathesis transformations of aromatic C–C bonds remain largely unexplored. Recently, we uncovered a rare-earth metal-enabled intramolecular metathesis between a benzene C–C bond and a C–C single bond, assisted by the high reactivity and synergistic effect of rare-earth metallacycles. Mechanistic studies reveal a stepwise [2+2] cycloaddition/cycloreversion sequence via a fused tricyclic intermediate. This transformation expands the chemical space of arene reactivity, providing a rare example of aromatic ring-opening metathesis through a noncarbene pathway.
Publication History
Received: 04 June 2025
Accepted after revision: 14 July 2025
Article published online:
01 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a National Research Council (US) Health and Medicine: Challenges for the Chemical Sciences in the 21st Century. Washington, DC: National Academies Press; 2004
- 1b Pigge FC. Mortier J. eds In Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Hoboken, NJ: John Wiley & Sons; 2015: 399
- 2 Bird CW. Tetrahedron 1996; 52: 9945
- 3a Yu J-Q, Shi Z-J. eds C–H Activation in Topics in Current Chemistry. vol 292. Berlin: Springer; 2010
- 3b Gutekunst WR, Baran PS. Chem Soc Rev 1976; 2011: 40
- 4 Jakoobi M, Sergeev AG. Chem Asian J 2019; 14: 2181
- 5a Büchner E, Curtius T. Ber Dtsch Chem Ges 1885; 18: 2371
- 5b Reisman SE, Nani RR, Levin S. Synlett 2011; 17: 2437
- 6a Zhu H, Fujimori S, Kostenko A, Inoue S. Chem Eur J 2023; 29: e202301973
- 6b Chan APY, Sergeev AG. Coord Chem Rev 2020; 413: 213213
- 7 Benitez VM, Grau JM, Yori JC, Pieck CL, Vera CR. Energy Fuels 2006; 20: 1791
- 8 Hu S, Shima T, Hou Z. Nature 2014; 512: 413
- 9 Guengerich FP, Yoshimoto FK. Chem Rev 2018; 118: 6573
- 10a Qiu X, Sang Y, Wu H. et al. Nature 2021; 597: 64
- 10b Cheng Z, Xu H, Hu Z. et al. J Am Chem Soc 2024; 146: 16963
- 11a Schrock RR, Czekelius C. Adv Synth Catal 2007; 349: 55
- 11b Ogba OM, Warner NC, O’Leary DJ, Grubbs RH. Chem Soc Rev 2018; 47: 4510
- 12 Zeits PD, Fiedler T, Gladysz JA. Chem Commun 2012; 48: 7925
- 13a Liu W, Wu P, Liang Y, Wei J, Zhang W-X. J Am Chem Soc 2025; 147: 1300
- 13b Hutskalova V, Sparr C. Nature 2025; 638: 697
- 14 Zhu M, Zhang X, Zheng C, You S-L. Acc Chem Res 2022; 55: 2510
- 15 Liu W, Huang D, Wei J, Zhang W-X. Acc Chem Res 2025; 58: 1696
- 16a Xu L, Wang Y-C, Wei J. et al. Chem Eur J 2015; 21: 6686
- 16b Ma W, Yu C, Chi Y. et al. Chem Sci 2017; 8: 6852
- 16c Ma W, Yu C, Chen T, Xu L, Zhang W-X, Xi Z. Chem Soc Rev 2017; 46: 1160
- 16d Du S, Yin J, Chi Y, Xu L, Zhang W-X. Angew Chem Int Ed 2017; 56: 15886
- 16e Lv Z-J, Huang Z, Shen J, Zhang W-X, Xi Z. J Am Chem Soc 2019; 141: 20547
- 16f Zheng Y, Cao C-S, Ma W. et al. J Am Chem Soc 2020; 142: 10705
- 16g Lv Z-J, Chai Z, Zhu M, Wei J, Zhang W-X. J Am Chem Soc 2021; 143: 9151
- 16h Zhu M, Chai Z, Lv Z-J. et al. J Am Chem Soc 2023; 145: 6633
- 16i Lv Z-J, Liu W, Zhang W-X. Chem Eur J 2023; 29: e202204079
- 16j Huang D, Liu W, Zheng Y. et al. J Am Chem Soc 2024; 146: 15609
- 17 Liu W, Zhao Y, Ma W. et al. Cell Rep Phys Sci 2023; 4: 101479