Subscribe to RSS
DOI: 10.1055/a-2557-7569
Applying the Principles of Green Chemistry to Cyclopropanation
This work has received financial support from the University of Aveiro, Fundação para a Ciência e a Tecnologia (FCT/MEC, UIDB/50006/2020), Gobierno del Principado de Asturias (SEK-25-GRU-GIC-24-054), Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España (MINECO, PID2022-137893OB-I00) and Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación/European Regional Development Fund (MCIU/AEI/FEDER, UE, RTI2018-099756-B-I00). P.I.C.G. also thanks FCT for her Ph.D. grant (2022.11294.BD).

Abstract
The cyclopropane motif is widely found in many natural products and drug candidates with relevant biological activities. Moreover, due to their strained ring, cyclopropanes possess higher reactivity compared to other alkanes, giving access to a wide range of transformations. Therefore, the preparation of cyclopropanes has attracted much attention over the past decades. However, increased awareness of the environmental impact of industry and laboratories has sparked the interest in the synthesis of cyclopropanes using the principles of green chemistry. The aim of this review is to give an overview of the cyclopropanation strategies that take into consideration the principles of green chemistry. The calculation of the E-factor of a selection of the presented examples provides further insights into the importance of evaluating a chemical process through to the isolated pure product.
1 Introduction
2 Alternative Reaction Media for Cyclopropanation Reactions
2.1 Water
2.2 Ionic Liquids
2.3 Solvent-Free Cyclopropanations
3 Alternative Energy Input Cyclopropanation Reactions
3.1 Electrochemistry
3.2 Mechanochemistry
3.3 Microwave Irradiation
3.4 Ultrasound Irradiation
4 Alternative Experimental Conditions for Cyclopropanation Reactions
4.1 Biocatalysis
4.2 Photocatalysis
5 E-Factor Calculations
6 Conclusion
Key words
cyclopropanes - cyclopropanation - green chemistry - Simmons–Smith - ionic liquids - biocatalysis - photocatalysisPublication History
Received: 08 January 2025
Accepted after revision: 13 March 2025
Accepted Manuscript online:
13 March 2025
Article published online:
08 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Ebner C, Carreira EM. Chem. Rev. 2017; 117: 11651
- 2 Chen DY.-K, Pouwer RH, Richard J.-A. Chem. Soc. Rev. 2012; 41: 4631
- 3 Časar Z. Synthesis 2020; 52: 1315
- 4 Talete TT. J. Med. Chem. 2016; 59: 8712
- 5 Abe H, Kikuchi S, Hayakawa K, Iida T, Nagahashi N, Maeda K, Sakamoto J, Matsumoto N, Miura T, Matsumura K, Seki N, Inaba T, Kawasaki H, Yamaguchi T, Kakefuda R, Nanayama T, Kurachi H, Hori Y, Yoshida T, Kakegawa J, Watanabe Y, Gilmartin AG, Richter MC, Moss KG, Laquerre SG. ACS Med. Chem. Lett. 2011; 2: 320
- 6 Okamoto K, Kodama K, Takase K, Sugi NH, Yamamoto Y, Iwata M, Tsuruoka A. Cancer Lett. 2013; 340: 97
- 7 Patel SS, Benfield P. Clin. Immunother. 1996; 6: 307
- 8 Wise R, Andrews JM, Edwards LJ. Antimicrob. Agents Chemother. 1983; 23: 559
- 9 Hohlfeld JM, Schoenfeld K, Lavae-Mokhtari M, Schaumann F, Mueller M, Bredenbroeker D, Krug N, Hermann R. Pulm. Pharmacol. Ther. 2008; 21: 616
- 10 Auclair AL, Martel JC, Assie MB, Bardin L, Heusler P, Cussac D, Marien M, Newman-Tancredi A, O’Connor JA, Depoortere R. Neuropharmacology 2013; 70: 338
- 11 Lavedan C, Forsberg M, Gentile AJ. Neuropharmacology 2015; 91: 142
- 12 Suzuki M, Iwasaki H, Fujikawa Y, Kitahara M, Sakashita M, Sakoda R. Bioorg. Med. Chem. 2001; 9: 2727
- 13 Farid NA, McIntosh M, Garofolo F, Wong E, Shwajch A, Kennedy M, Young M, Sarkar P, Kawabata K, Takahashi M, Pang H. Rapid Commun. Mass Spectrom. 2007; 21: 169
- 14a Simmons HE, Smith RD. J. Am. Chem. Soc. 1958; 80: 5323
- 14b Simmons HE, Smith RD. J. Am. Chem. Soc. 1959; 81: 4256
- 14c Munir R, Zahoor AF, Javed S, Parveen B, Mansha A, Irfan A, Khan SG, Irfan A, Kotwica-Mojzych K, Mojzych M. Molecules 2023; 28: 5651
- 14d Concellón JM, Rodríguez-Solla H, Concellón C, del Amo V. Chem. Soc. Rev. 2010; 39: 4103
-
14e
Rodríguez-Solla H,
Concellón C,
del Amo V,
Díaz-Pardo A,
Blanco EG,
García-Granda S,
Díaz MR,
Llavona R,
Soengas RG.
Eur. J. Org. Chem. 2013; 4953
- 15a Denmark SE, Stavenger RA, Faucher AM, Edwards JP. J. Org. Chem. 1997; 62: 3375
-
15b
Honma M,
Takeda H,
Takano M,
Nakada M.
Synlett 2009; 1695
- 15c Morandi B, Carreira EM. Science 2012; 335: 1471
- 16a Allouche EM. D, Charette AB. Synthesis 2019; 51: 3947
- 16b Menchikov LG, Shulishov EV, Tomilov YV. Russ. Chem. Rev. 2021; 90: 199
- 17a Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1962; 84: 3782
- 17b Mamai A, Madalengoitia JS. Tetrahedron Lett. 2000; 41: 9009
- 17c Beutner GL, George DT. Org. Process Res. Dev. 2023; 27: 10
- 17d Moorthy R, Bio-Sawe W, Thorat SS, Sibi MP. Org. Chem. Front. 2024; 11: 4560
- 18 Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; Oxford: 1998
- 19 Kurniawan YS, Priyangga KT. A, Krisbiantoro PA, Imawan AC. J. Multidiscip. Appl. Nat. Sci. 2021; 1: 1
- 20 Häckl K, Kunz W. C. R. Chim. 2018; 21: 572
- 21 Gu Y, Jérôme F. Chem. Soc. Rev. 2013; 42: 9550
- 22 Lindström UM. Chem. Rev. 2002; 102: 2751
- 23 Simon M.-O, Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
- 24 Nicolas I, Le Maux P, Simonneaux G. Coord. Chem. Rev. 2008; 252: 727
-
25
Uria U,
Vicario JL,
Badía D,
Carrillo L,
Reyes E,
Pesquera A.
Synthesis 2010; 701
- 26 Martínez JI, Reyes E, Uria U, Carrillo L, Vicario JL. ChemCatChem 2013; 5: 2240
- 27 Anand A, Yenagi J, Tonannavar J, Kulkarni MV. Green Chem. 2016; 18: 2201
- 28 Duan Y.-N, Zhang Z, Zhang C. Org. Lett. 2016; 18: 6176
- 29 Duan Y.-N, Cui L.-Q, Zuo L.-H, Zhang C. Chem. Eur. J. 2015; 21: 13052
- 30 Morandi B, Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 938
- 31 Morandi B, Mariampillai B, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 1101
- 32 Li Q.-Z, Zhang X, Xie K, Dai Q.-S, Zeng R, Liu Y.-Q, Jia Z.-Q, Feng X, Li J.-L. Green Chem. 2019; 21: 2375
- 33 Muthusamy S, Ramkumar R. Synlett 2015; 26: 2156
- 34 Abu-Elfotoh A.-M, Nguyen DP. T, Chanthamath S, Phomkeona K, Shibatomi K, Iwasa S. Adv. Synth. Catal. 2012; 354: 3435
- 35 Mandour HS. A, Nakagawa Y, Tone M, Inoue H, Otog N, Fujisawa I, Chanthamath S, Iwasa S. Beilstein J. Org. Chem. 2019; 15: 357
- 36 Lipshutz BH. Curr. Opin. Green Sustainable Chem. 2018; 11: 1
- 37 Lipshutz BH, Ghorai S, Abela AR, Moser R, Nishikata T, Duplais C, Krasovskiy A, Gaston RD, Gadwood RC. J. Org. Chem. 2011; 76: 4379
- 38 Andersson MP, Gallou F, Klumphu P, Takale BS, Lipshutz BH. Chem. Eur. J. 2018; 24: 6778
- 39 Lipshutz BH. J. Org. Chem. 2017; 82: 2806
- 40 Maaskant RV, Polanco EA, Van Lier RC. W, Roelfes G. Org. Biomol. Chem. 2020; 18: 638
- 41 Van Oers MC. M, Abdelmohsen LK. E. A, Rutjes FP. J. T, Van Hest JC. M. Chem. Commun. 2014; 50: 4040
- 42 Otte M, Kuijpers PF, Troeppner O, Ivanović Burmazović I, Reek JN. H, de Bruin B. Chem. Eur. J. 2014; 20: 4880
- 43 Hallett JP, Welton T. Chem. Rev. 2011; 111: 3508
- 44 Sowmiah S, Cheng CI, Chu Y.-H. Curr. Org. Synth. 2012; 9: 74
- 45 Singh SK, Savoy AW. J. Mol. Liq. 2020; 297: 112038
- 46 Fraile JM, García JI, Herrerías CI, Mayoral JA, Carrié D, Vaultier M. Tetrahedron: Asymmetry 2001; 12: 1891
- 47 Fraile JM, García JI, Herrerías CI, Mayoral JA, Gmough S, Vaultier M. Green Chem. 2004; 6: 93
- 48 Fraile JM, García JI, Herrerías CI, Mayoral JA, Reiser O, Vaultier M. Tetrahedron Lett. 2004; 45: 6765
- 49 García JI, Herrerías CI, López-Sánchez B, Mayoral JA, Miñana AC. Tetrahedron: Asymmetry 2014; 25: 833
- 50 Davies DL, Kandola SK, Patel RK. Tetrahedron: Asymmetry 2004; 15: 77
- 51 Yadav JS, Reddy BV. S, Reddy PN. Adv. Synth. Catal. 2004; 346: 53
- 52 Forbes DC, Patrawala SA, Tran KL. T. Organometallics 2006; 25: 2693
- 53 Large T, Muller T, Kunkel H, Buck S, Maas G. Z. Naturforsch., B: J. Chem. Sci. 2012; 67: 347
- 54 Yang F, Zhang Y, Qiu W, Tang J, He M. Chin. J. Chem. 2002; 20: 114
- 55 Cotugno P, Monopoli A, Ciminale F, Milella A, Nacci A. Angew. Chem. Int. Ed. 2014; 53: 13563
- 56 Corma A, Domínguez I, Ródenas T, Sabater MJ. J. Catal. 2008; 259: 26
- 57 Calò V, Nacci A, Lopez L, Lerario VL. Tetrahedron Lett. 2000; 41: 8977
- 58 Chandrasekhar S, Narasihmulu C, Jagadeshwar V, Venkatram Reddy K. Tetrahedron Lett. 2003; 44: 3629
- 59 Malunavar SS, Sutar SM, Prabhala P, Savanur HM, Kalkhambkar RG, Aridoss G, Laali KK. Tetrahedron Lett. 2021; 81: 153339
-
60
Shestopalov A,
Rodinovskaya L,
Shestopalov A,
Zlotin S,
Nesterov V.
Synlett 2003; 2309
-
61
Mekonnen A,
Carlson R.
Synthesis 2006; 1657
- 62 Suchiya Y, Izumisawa Y, Togo H. Tetrahedron 2009; 65: 7533
- 63 Sheldon RA. Green Chem. 2005; 7: 267
- 64 Tanaka K, Toda F. Chem. Rev. 2000; 100: 1025
- 65 Wurz RP, Charette AB. Org. Lett. 2003; 5: 2327
- 66 Karthik G, Rajasekaran T, Sridhar B, Reddy BV. S. Tetrahedron Lett. 2014; 55: 7064
- 67 Zhang X, Zeng R, Feng X, Dai Q, Liu Y, Liu Y, Wang Q, Li Q, Li J. Asian J. Org. Chem. 2018; 7: 2065
- 68 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 69 Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
- 70 Kumar R, Banerjee N, Kumar P, Banerjee P. Chem. Eur. J. 2023; 29: e202301594
- 71 Kim MJ, Wang DJ, Targos K, Garcia UA, Harris AF, Guzei IA, Wickens ZK. Angew. Chem. Int. Ed. 2023; 62: e202303032
- 72 Jie LH, Xu HC. J. Electrochem. 2024; 30: 2313001
- 73 Andersen J, Mack J. Green Chem. 2018; 20: 1435
- 74 Ardila-Fierro KJ, Hernández JG. ChemSusChem 2021; 14: 2145
- 75 Ren Z, Cao W, Ding W, Shi W. Synth. Commun. 2004; 34: 4395
- 76 Psyan NN, Rezaee M. Monatsh. Chem. 2014; 145: 1165
- 77 Kashani E, Pesyan NN, Tunç T, Ôahin E. J. Chin. Chem. Soc. 2015; 62: 249
- 78 Chen L, Bovee MO, Lemma BE, Keithley KS. M, Pilson SL, Coleman MG, Mack J. Angew. Chem. Int. Ed. 2015; 54: 11084
- 79 Pontini L, Leitch JA, Browne DL. Green Chem. 2023; 25: 4319
- 80 Wang C, Yang L. Org. Prep. Proced. Int. 2023; 55: 288
- 81 Grewal AS, Kumar K, Redhu S, Bhardwaj S. Int. Res. J. Pharm. Appl. Sci. 2013; 3: 278
- 82 Bassyouni FA, Abu-Bakr SM, Rehim MA. E. Res. Chem. Intermed. 2012; 38: 283
-
83
Finta Z,
Hell Z,
Tôke L.
J. Chem. Res. 2000; 242
- 84 Gumaste VK, Khan AJ, Bhawal BM, Deshmukh AR. A. S. Indian J. Chem., Section B: Org. Chem. Incl. Med. Chem. 2004; 43: 420
- 85 Barluenga J, Fernández-Rodríguez MA, García-García P, Aguilar E, Merino I. Chem. Eur. J. 2006; 12: 303
- 86 Yin J, Li X, Wu X, Chen B, Liu Z, Song Q. Can. J. Chem. 2005; 83: 2140
- 87 Gill DM, McLay N, Waring MJ, Wilkinson CT, Sweeney JB. Synlett 2014; 25: 1756
- 88 Cai S, Xiao L, Liao L, Liu L. Chin. J. Org. Chem. 2013; 33: 2602
- 89 Xiao L, Liao L, Liu L. Chem. Phys. Lett. 2013; 556: 376
-
90
Hadad C,
Syrgiannis Z,
Bonasera A,
Prato M.
Eur. J. Org. Chem. 2015; 1423
- 91 López-Rodríguez A, Domínguez G, Pérez-Castells J. ChemistrySelect 2017; 2: 2565
- 92 Levchenko VA, Siah H.-SM, Øien-Ødegaard S, Kaur G, Fiksdahl A, Tilset M. Mol. Catal. 2020; 492: 111009
- 93 Chimaladenne V, Surapureddi SR. K, Valluru KR, Kampli A, Brahman PK, Laxmi SV. Synth. Commun. 2022; 52: 1357
- 94 Cintas P, Palmisano G, Cravotto G. Ultrason. Sonochem. 2011; 18: 836
- 95 De Souza-Barboza JC, Petrier C, Luche JL. J. Org. Chem. 1988; 53: 1212
- 96 Repič O, Vogt S. Tetrahedron Lett. 1982; 23: 2729
- 97 Lie Ken Jie MS. F, Lam WL. K. J. Am. Oil Chem. Soc. 1988; 65: 118
- 98 Cains PW, Martin PD, Price CJ. Org. Process Res. Dev. 1998; 2: 34
- 99 Silveira CC, Braga AL, Fiorin GL. Synth. Commun. 1994; 24: 2075
- 100 Masuno MN, Young DM, Hoepker AC, Skepper CK, Molinski TF. J. Org. Chem. 2005; 70: 4162
- 101 Wang M.-L, Prasad GS. Ultrason. Sonochem. 2012; 19: 1139
- 102 Jain SL, Sain B. J. Mol. Catal. A: Chem. 2004; 212: 91
- 103 Ben Hamadi N, Msaddek M. C. R. Chim. 2012; 15: 409
- 104 Pourshab M, Asghari S, Tajbakhsh M, Khalilpour A. Chem. Biodiversity 2019; 16: e1900087
- 105 Yavari I, Sheikhi S, Sheykhahmadi J, Taheri Z, Halvagar MR. Synthesis 2021; 53: 2057
- 106 Abaszadeh M, Seifi M. Org. Biomol. Chem. 2014; 12: 7859
- 107 Sheldon RA, Brady D. ACS Sustainable Chem. Eng. 2021; 9: 8032
- 108 Li X, Shimaya R, Dairi T, Chang W, Ogasawara Y. Angew. Chem. Int. Ed. 2022; 61: e202113189
- 109 Shimo S, Ushimaru R, Engelbrecht A, Harada M, Miyamoto K, Kulik A, Uchiyama M, Kaysser L, Abe I. J. Am. Chem. Soc. 2021; 143: 18413
- 110 Ushimaru R, Cha L, Shimo S, Li X, Paris JC, Mori T, Miyamoto K, Coffer L, Uchiyama M, Guo Y, Chang W, Abe I. J. Am. Chem. Soc. 2023; 145: 24210
- 111 Coelho PS, Brustad EM, Kannan A, Arnold FH. Science 2013; 339: 307
- 112 Coelho PS, Wang ZJ, Ener ME, Baril SA, Kannan A, Arnold FH, Brustad EM. Nat. Chem. Biol. 2013; 9: 485
- 113 Wang ZJ, Renata H, Peck NE, Farwell CC, Coelho PS, Arnold FH. Angew. Chem. Int. Ed. 2014; 53: 6810
- 114 Gober JG, Rydeen AE, Gibson-O’Grady EJ, Leuthaeuser JB, Fetrow JS, Brustad EM. ChemBioChem 2016; 17: 394
- 115 Gober JG, Ghodge SV, Bogart JW, Wever WJ, Watkins RR, Brustad EM, Bowers AA. ACS Chem. Biol. 2017; 12: 1726
- 116 Suzuki K, Shisaka Y, Stanfield JK, Watanabe Y, Shoji O. Chem. Commun. 2020; 56: 11026
- 117 Bloomer BJ, Joyner IA, Garcia-Borràs M, Hu DB, Garçon M, Quest A, Montero CU, Yu IF, Clark DS, Hartwig JF. J. Am. Chem. Soc. 2024; 146: 1819
- 118 Bordeaux M, Tyagi V, Fasan R. Angew. Chem. Int. Ed. 2015; 54: 1744
- 119 Chandgude AL, Fasan R. Angew. Chem. Int. Ed. 2018; 57: 15852
- 120 Carminati DM, Decaens J, Couve-Bonnaire S, Jubault P, Fasan R. Angew. Chem. Int. Ed. 2020; 60: 7072
- 121 Roy S, Wang Y, Zhao X, Dayananda T, Chu J, Zhang Y, Fasan R. J. Am. Chem. Soc. 2024; 146: 19673
- 122 Nam D, Steck V, Potenzino RJ, Fasan R. J. Am. Chem. Soc. 2021; 143: 2221
- 123 Ren X, Chandgude AL, Carminati DM, Khare SD, Fasan R. Chem. Sci. 2022; 13: 8550
- 124 Ren X, Liu N, Chandgude AL, Fasan R. Angew. Chem. Int. Ed. 2020; 59: 21634
- 125 Villada JD, Majhi J, Lehuédé V, Hendricks ME, Neufeld K, Tona V, Fasan R. Angew. Chem. Int. Ed. 2024; 63: e202406779
- 126 Xie H, Li F, Xu Y, Wang C, Xu Y, Wu J, Li Z, Wang Z, Wang L. Green Chem. 2023; 25: 6853
- 127 Sardana M, Mühlfenzl KS, Wenker ST. M, Åkesson C, Hayes MA, Elmore CS, Pithani S. J. Labelled Compd. Radiopharm. 2022; 65: 86
- 128 Zhang X, Song J, Gao N, Guan Z, He Y. J. Mol. Catal. B: Enzym. 2016; 134: 1
-
129
Chaidali AG,
Terzidis MA,
Lykakis IN.
Chem. Eur. J. 2025; in press
- 130 Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 131 Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 132 Crisenza GE. M, Melchiorre P. Nat. Commun. 2020; 11: 803
-
133
Chen Z,
Xie Y,
Xuan J.
Eur. J. Org. Chem. 2022; e202201066
- 134 Han X, Zhang N, Li Q, Zhang Y, Das D. Chem. Sci. 2024; 15: 13576
- 135 Yan K, He H, Li J, Luo Y, Lai R, Guo L, Wu Y. Chin. Chem. Lett. 2021; 32: 3984
- 136 Chen S, Zhang Y, Liu S, Shen X. Sci. China Chem. 2023; 66: 3141
- 137 Ide K, Furuta M, Tokuyama H. Org. Biomol. Chem. 2021; 19: 9172
- 138 Indurmuddam RR, Huang P, Hong B, Chien S. Org. Lett. 2024; 26: 5752
- 139 Sheldon RA, Bode ML, Akakios SG. Curr. Opin. Green Sustainable Chem. 2022; 33: 100569
-
140
Sheldon RA.
Chem. Ind. 1992; 903
- 141 Sheldon RA. Green Chem. 2023; 25: 1704
- 142 Zanotti G, Imperatori P, Paoletti AM, Pennesi G. Molecules 2021; 26: 1760
- 143 Pessel F, Augé J, Billault I, Scherrmann M.-C. Beilstein J. Org. Chem. 2016; 12: 2351
For reviews see: