Subscribe to RSS
DOI: 10.1055/a-2335-8736
Design, Synthesis, and Assessment of Tricarboxylic Acid Cycle Probes
This study was supported by the National Institutes of Health, National Cancer Institute (R15 CA277814).

Abstract
Hyperpolarized 13C magnetic resonance spectroscopy can provide unique insights into metabolic activity in vivo. Despite the advantages of this technology, certain metabolic pathways such as the tricarboxylic acid (TCA) cycle are more challenging to examine due to the limitations associated with currently available hyperpolarized 13C probes. In this report, we systematically employ computational analyses, synthetic techniques, and in vitro studies to facilitate the design of new chemical probes for the TCA cycle. This platform allows for the rapid identification of probe scaffolds that are amenable to hyperpolarized 13C experimentation. Using these results, we have developed two 13C-labeled chemical probes, [1,4-13C2]-dipropyl succinate and [1,4-13C2]-diallyl succinate, which are employed in hyperpolarized 13C metabolic studies.
Key words
hyperpolarized 13C - chemical probe - metabolism - tricarboxylic acid cycle - esterification - esterase - in vitro assaysSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2335-8736.
- Supporting Information
Publication History
Received: 26 April 2024
Accepted after revision: 29 May 2024
Accepted Manuscript online:
29 May 2024
Article published online:
12 June 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Current address: Darrian Chao, Department of Chemistry, University of California Irvine, Irvine 92697, USA.
- 2 Wang ZJ, Ohliger MA, Larson PE. Z, Gordon JW, Bok RA, Slater J, Villanueva-Meyer JE, Hess CP, Kurhanewicz J, Vigneron DB. Radiology 2019; 291: 273
- 3a Deen SS, Rooney C, Shinozaki A, McGing J, Grist JT, Tyler DJ, Serrão E, Gallagher FA. Radiol. Imaging Cancer 2023; 5: e230005
- 3b Vaeggemose MF, Schulte R, Laustsen C. Metabolites 2021; 11: 219
- 3c Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH, Bankson JA, Brindle K, Cunningham CH, Gallagher FA, Keshari KR, Kjaer A, Laustsen C, Mankoff DA, Merritt ME, Nelson SJ, Pauly JM, Lee P, Ronen S, Tyler DJ, Rajan SS, Spielman DM, Wald L, Zhang X, Malloy CR, Rizi R. Neoplasia 2019; 21: 1
- 4a Keshari KR, Wilson DM. Chem. Soc. Rev. 2014; 43: 1627
- 4b Singh J, Suh EH, Sharma G, Khemtong C, Sherry AD, Kovacs Z. NMR Biomed. 2019; 32: e4018
- 5a Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M, van Criekinge M, Chang JW, Bok R, Park I, Reed G, Carvajal L, Small EJ, Munster P, Weinberg VK, Ardenkjaer-Larsen JH, Chen AP, Hurd RE, Odegardstuen LI, Robb FJ, Tropp J, Murray JA. Sci. Transl. Med. 2013; 5: 198ra108
- 5b Larson PE, Bernard JM, Bankson JA, Bøgh N, Bok RA, Chen AP, Cunningham CH, Gordon J, Hövener JB, Laustsen C, Mayer D, McLean MA, Schilling F, Slater J, Vanderheyden JL, von Morze C, Vigneron DB, Xu D. Magn. Reson. Med. 2024; 91: 2204
- 6 https://www.cancer.gov/research/participate/clinical-trials/intervention/hyperpolarized-carbon-c-13-pyruvate (accessed Jun 07, 2024)
- 7a Chen J, Singh TK, Al Nemri S, Zaidi M, Billingsley KL, Park JM. ACS Sens. 2023; 8: 2927
- 7b Chen J, LaGue E, Li J, Yang C, Hackett EP, Mendoza M, Alger JR, DeBerardinis RJ, Corbin IR, Billingsley KL, Park JM. Anal. Sens. 2021; 1: 196
- 7c Park JM, Wu M, Datta K, Liu SC, Castillo A, Lough H, Spielman DM, Billingsley KL. J. Am. Chem. Soc. 2017; 139: 6629
- 8 DeBerardinis RJ, Chandel NS. Nat. Metab. 2020; 2: 127
- 9a Bhattacharya P, Chekmenev EY, Perman WH, Harris KC, Lin AP, Norton VA, Tan CT, Ross BD, Weitekamp DP. J. Magn. Reson. 2007; 186: 150
- 9b Billingsley KL, Josan S, Park JM, Tee SS, Spielman-Sun E, Hurd R, Mayer D, Spielman D. NMR Biomed. 2014; 27: 356
- 9c Gallagher FA, Kettunen MI, Hu DE, Jensen PR, Zandt RI, Karlsson M, Gisselsson A, Nelson SK, Witney TH, Bohndiek SE, Hansson G, Peitersen T, Lerche MH, Brindle KM. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 19801
- 9d Eills J, Cavallari E, Carrera C, Budker D, Aime S, Reineri F. J. Am. Chem. Soc. 2019; 141: 20209
- 9e Chaumeil MM, Larson PE. Z, Yoshihara HA. I, Danforth OM, Vigneron DB, Nelson SJ, Pieper RO, Phillips JJ, Ronen SM. Nat. Commun. 2013; 4: 2429
- 9f Singh J, Suh EH, Sharma G, Chen J, Hackett EP, Wen X, Sherry AD, Khemtong C, Malloy CR, Park JM, Kovacs Z. Anal. Sens. 2021; 1: 156
- 10 For a representative example, see: Chung BT, Kim Y, Gordon JW, Chen HY, Autry AW, Lee PM, Hu JY, Tan CT, Suszczynski C, Chang SM, Villanueva-Meyer JE, Bok RA, Larson PE. Z, Xu D, Li Y, Vigneron DB. Neuroimage 2023; 280: 120350
- 11a Jensen PR, Serra SC, Miragoli L, Karlsson M, Cabella C, Poggi L, Venturi L, Tedoldi F, Lerche MH. Int. J. Cancer 2015; 136: E117
- 11b Hurd RE, Yen YF, Mayer D, Chen A, Wilson D, Kohler S, Bok R, Vigneron D, Kurhanewicz J, Tropp J, Spielman D, Pfefferbaum A. Magn. Reson. Med. 2010; 63: 1137
- 11c Miller JJ, Grist JT, Serres S, Larkin JR, Lau AZ, Ray K, Fisher KR, Hansen E, Tougaard RS, Nielsen PM, Lindhardt J, Laustsen C, Gallagher FA, Tyler DJ, Sibson N. Sci. Rep. 2018; 8: 15082
- 11d Carrera C, Cavallari E, Digilio G, Bondar O, Aime S, Reineri F. ChemPhysChem 2021; 22: 1042
- 12a Grist JT, McLean MA, Riemer F, Schulte RF, Deen SS, Zaccagna F, Woitek R, Daniels CJ, Kaggie JD, Matys T, Patterson I, Slough R, Gill AB, Chhabra A, Eichenberger R, Laurent MC, Comment A, Gillard JH, Coles AJ, Tyler DJ, Wilkinson I, Basu B, Lomas DJ, Graves MJ, Brindle KM, Gallagher FA. Neuroimage 2019; 189: 171
- 12b Chung BT, Chen HY, Gordon J, Mammoli D, Sriram R, Autry AW, Le Page LM, Chaumeil MM, Shin P, Slater J, Tan CT, Suszczynski C, Chang S, Li Y, Bok RA, Ronen SM, Larson PE. Z, Kurhanewicz J, Vigneron DB. J. Magn. Reson. 2019; 309: 106617
- 13a Lachenmeier DW, Haupt S, Schulz K. Regul. Toxicol. Pharmacol. 2008; 50: 313
- 13b Kwong T, Magnani B, Rosano T, Shaw L. In The Clinical Toxicology Laboratory: Contemporary Practice of Poisoning Evaluation . American Association for Clinical Chemistry; Washington DC: 2012
- 14a Salnikov OG, Chukanov NV, Shchepin RV, Manzanera Esteve IV, Kovtunov KV, Koptyug IV, Chekmenev EY. J. Phys. Chem. C 2019; 123: 12827
- 14b Cavallari E, Carrera C, Aime S, Reineri F. J. Magn. Reson. 2018; 289: 12
- 15a Kovtunov KV, Pokochueva EV, Salnikov OG, Cousin SF, Kurzbach D, Vuichoud B, Jannin S, Chekmenev EY, Goodson BM, Barskiy DA, Koptyug IV. Chem. Asian J. 2018; 13: 1857
- 15b Reineri F, Boi T, Aime S. Nat. Commun. 2015; 6: 5858
- 15c Glöggler S, Wagner S, Bouchard LS. Chem. Sci. 2015; 6: 4261
- 15d McCormick J, Korchak S, Mamone S, Ertas YN, Liu Z, Verlinsky L, Wagner S, Glöggler S, Bouchard LS. Angew. Chem. Int. Ed. 2018; 57: 10692
- 16 Avdeef A. Expert Opin. Drug Metab. Toxicol. 2005; 1: 325
- 17 Peng H, Li T, Tian D, Yang H, Xu G, Tang W. Org. Biomol. Chem. 2021; 19: 4327
- 18 Vanier GS. Synlett 2007; 131
- 19 Fabian L, Gómez M, Kuran JA. C, Moltrasio G, Moglioni A. Synth. Commun. 2014; 44: 2386
- 20 Yanm J, Travis BR, Borhan B. J. Org. Chem. 2004; 69: 9299
- 21 Leyva A, Corma A. J. Org. Chem. 2009; 74: 2067
- 22 Lam YP, Lam Z, Yeung YY. J. Org. Chem. 2021; 86: 1183
For representative examples, see:
For representative examples, see:
For representative examples, see:
For representative examples, see: