Synthesis 2024; 56(04): 577-584
DOI: 10.1055/a-2217-0996
special topic
Synthetic Development of Key Intermediates and Active Pharmaceutical Ingredients (APIs)

Efficient and Scalable Synthesis of 6,6-Dimethyl-3-oxabicyclo [3.1.0]hexan-2-one through Organocatalyzed Desymmetrization and Chemoselective Reduction

Guillaume Tintori
a   Minakem Recherche, 145 Chemin des Lilas, 59310 Beuvry-La-Forêt, France
,
Clément Jacob
a   Minakem Recherche, 145 Chemin des Lilas, 59310 Beuvry-La-Forêt, France
,
Christine Delsarte
a   Minakem Recherche, 145 Chemin des Lilas, 59310 Beuvry-La-Forêt, France
,
François Potié
a   Minakem Recherche, 145 Chemin des Lilas, 59310 Beuvry-La-Forêt, France
,
Laurence Grimaud
b   LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
,
Maxime Vitale
b   LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
,
a   Minakem Recherche, 145 Chemin des Lilas, 59310 Beuvry-La-Forêt, France
› Author Affiliations
This work was fully funded by Minakem.


This work is dedicated to Professor Aloïs Fürstner

Abstract

The development of a robust process to 6,6-dimethyl-3-oxabicyclo[3.1.0]hexan-2-one, a key intermediate toward several active compounds of interest, is described. A scalable organocatalyzed desymmetrization was first studied and the reaction proved to be compatible with standard dilution. A kinetic study was performed to elucidate substrate and catalyst concentration dependences. Next, a chemoselective reduction of the carboxylic acid was developed. The scalability was demonstrated on 100 g scale through a fully telescoped process.

Supporting Information



Publication History

Received: 13 October 2023

Accepted after revision: 23 November 2023

Accepted Manuscript online:
23 November 2023

Article published online:
02 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Allais C, Connor CG, Do NM, Kulkarni S, Lee JW, Lee T, McInturff E, Piper J, Place DW, Ragan JA, Weekly RM. ACS Cent. Sci. 2023; 9: 849
  • 2 Berranger T, Demonchaux P. Patent FR2972453A1, 2012
    • 3a Doyle MP, Pieters RJ, Martin SF, Austin RE, Oalmann CJ, Mueller P. J. Am. Chem. Soc. 1991; 113: 1423
    • 3b Doyle MP, Winchester WR, Hoorn JA. A, Lynch V, Simonsen SH, Ghosh R. J. Am. Chem. Soc. 1993; 115: 9968
    • 3c Doyle MP, Austin RE, Bailey AS, Dwyer MP, Dyatkin AB, Kalinin AV, Kwan MM. Y, Liras S, Oalmann CJ. J. Am. Chem. Soc. 1995; 117: 5763
    • 3d Löffler LE, Wirtz C, Fürstner A. Angew. Chem. Int. Ed. 2021; 60: 5316
  • 4 Abu-Elfotoh AM, Phomkeona K, Shibatomi K, Iwasa S. Angew. Chem. Int. Ed. 2010; 49: 8439
  • 5 Ruppel JV, Cui X, Xu X, Zhang XP. Org. Chem. Front. 2014; 1: 515
  • 6 Doyle MP, Peterson CS, Zhou QL, Nishiyama H. Chem. Commun. 1997; 211
    • 7a Jakovac IJ, Ng G, Lok KP, Jones JB. J. Chem. Soc., Chem. Commun. 1980; 515
    • 7b Jakovac IJ, Goodbrand HB, Lok KP, Jones JB. J. Am. Chem. Soc. 1982; 104: 4659
    • 7c Jones JB, Jakovac IJ. Org. Synth. 1985; 63: 10
  • 8 Rein J, Rozema SD, Langner OC, Zacate SB, Hardy MA, Siu JC, Mercado BQ, Sigman MS, Miller SJ, Lin S. Science 2023; 380: 706
  • 9 Sevrin M, Hevesi L, Krief A. Tetrahedron Lett. 1976; 3915
  • 10 Franck-Neumann M. Angew. Chem. Int. Ed. 1968; 7: 65
  • 11 Mandal AK, Borude DP, Armugasamy R, Soni NR, Jawalkar DG, Mahajan SW, Ratnam KR, Goghare AD. Tetrahedron 1986; 42: 5715
    • 12a Hiratake J, Inagaki M, Yamamoto Y, Oda J. J. Chem. Soc., Perkin Trans 1 1987; 1053
    • 12b Milewska MJ, Gdaniec M, Połoński T. Tetrahedron: Asymmetry 1996; 7: 3169
  • 13 Schmitt E, Schiffers I, Bolm C. Tetrahedron 2010; 66: 6349
  • 14 Barton LM, Chen L, Blackmond DG, Baran PS. Proc. Natl. Acad. Sci. U. S. A. 2021; 118: e2109408118
  • 15 Doyle AG, Jacobsen EN.. Chem. Rev. 2007; 107: 5713
  • 16 Absolute configuration was deduced from reference 13.
  • 17 Shim JH, Park SJ, Ahn BK, Lee JY, Kim HS, Ha DC. ACS Omega 2021; 6: 34501
  • 18 Rho HS, Oh SH, Lee JW, Lee JY, Chin J, Song CE. Chem. Commun. 2008; 1208
  • 19 During the course of this study, we observed that non-recrystallized caronic anhydride (8) led to lower performance in terms of reactivity and stereoselectivity.
  • 20 Excess of phenyl isothiocyanate (12) had no influence on the reaction outcome.
  • 23 See SI (Figure S3) for DSC of the mixture before distillation.
  • 24 Process Mass Intensity (PMI) = 127 (for the four telescoped steps).
  • 25 Li X, Deng H, Zhang B, Li J, Zhang L, Luo S, Cheng J.-P. Chem. Eur. J. 2010; 16: 450
  • 26 Abu-Elfotoh A.-M, Phomkeona K, Shibatomi K, Iwasa S. Angew. Chem. Int. Ed. 2010; 49: 8439