Synthesis 2024; 56(03): 469-481
DOI: 10.1055/a-2193-5436
paper

An Efficient Copper-Mediated Route for the Synthesis of 2-Substituted Benzothiazoles from Dithioesters and Investigation of Their Antibacterial Activities

Kodipura P. Sukrutha
a   Department of Studies in Chemistry, University of Mysore, Manasagangothri, Mysuru, 570006, India
,
Kuppalli R. Kiran
a   Department of Studies in Chemistry, University of Mysore, Manasagangothri, Mysuru, 570006, India
,
Kodagahally T. Gunashree
a   Department of Studies in Chemistry, University of Mysore, Manasagangothri, Mysuru, 570006, India
,
Shivakumar Divyashree
b   Department of Studies in Microbiology, University of Mysore, Manasagangothri, Mysuru, 570006, India
,
Prerana Purusotham
b   Department of Studies in Microbiology, University of Mysore, Manasagangothri, Mysuru, 570006, India
,
Marikunte Y. Sreenivasa
b   Department of Studies in Microbiology, University of Mysore, Manasagangothri, Mysuru, 570006, India
,
a   Department of Studies in Chemistry, University of Mysore, Manasagangothri, Mysuru, 570006, India
› Author Affiliations
K.P.S. thanks the Institute of Excellence, University of Mysore, Mysuru for providing a fellowship to conduct research and an instrumentation facility [IOE PROJECT: DV 2/30/PDF/PA/IOE/2010-11 (VOL-II) Dated 16.10.2019]. The authors thank the Vision Group on Science and Technology (VGST) Government of Karnataka for the project VGST-K-FIST L1, GRD NO:1038/2021-22/427e.


Abstract

An efficient one-pot synthesis of 2-aryl/2-aroylbenzothiazoles through copper-mediated condensation of 2-chloroanilines with dithioesters has been developed. The method provides good isolated yields and exhibits broad functional group tolerance, accommodating both electron-donating and electron-withdrawing groups on the substrates. A series of synthesized compounds was evaluated for their antibacterial activity against Klebsiella pneumoniae, Pseudomonas aeruginosa, and Salmonella paratyphi. Among the series, three compounds exhibited a significant inhibitory effect against the tested pathogens, with one also demonstrating potential as an effective compound in both the agar well diffusion assay and broth microdilution assay. Additionally, the three compounds displayed strong inhibitory effects on biofilm formation of the pathogens in both the crystal violet assay and MTT assay at a concentration of 10 mM. These findings highlight the promising antimicrobial and antibiofilm properties of these compounds, indicating the potential for their further investigation as potential therapeutic agents against the tested pathogens.

Supporting Information



Publication History

Received: 08 September 2023

Accepted after revision: 17 October 2023

Accepted Manuscript online:
17 October 2023

Article published online:
22 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kalra SP, Naithani N, Mehta SR, Swamy AJ. Med. J. Armed Forces India 2003; 59: 130
    • 1b GBD 2019 Antimicrobial Resistance Collaborators, Lancet 2022; 400: 2221
    • 1c Rickard J, Beilman G, Forrester J, Sawyer R, Stephen A, Weiser TG, Valenzuela J. Surg. Infect. 2020; 21: 478
    • 1d Antimicrobial Resistance Collaborators, Lancet 2022; 399: 629
    • 2a Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MK. F, Baloch Z. Infect. Drug Resist. 2018; 11: 1645
    • 2b Sharma D, Misba L, Khan AU. Antimicrob. Resist. Infect. Control 2019; 8: 76
    • 2c Frieri M, Kumar K, Boutin A. J. Infect. Public Health 2017; 10: 369
    • 2d Morens DM, Folkers GK, Fauci AS. Nature 2004; 430: 242
    • 2e Lindahl JF, Grace D. Infect. Ecol. Epidemiol. 2015; 5: 30048
    • 2f Nii-Trebi NI. BioMed Res. Int. 2017; e5245021
    • 3a Chlebicz A, Śliżewska K. Int. J. Environ. Res. Public Health 2018; 15: 863
    • 3b Hadi J, Wu S, Brightwell G. Foods 2020; 9: 1895
    • 3c Bentley S, Sabaihia M, Thomson N, Holden M, Crossman L, Bell K, Parkhill J. Cellular Microbiology. Cossart P, Boquet P, Normark S, Rappuoli R. 2004: 35-62
    • 4a Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV, Fernandes AR. Molecules 2015; 20: 16852
    • 4b Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
    • 4c Gaba M, Mohan C. Med. Chem. Res. 2016; 25: 173
    • 4d Ferreira VF, da Rocha DR, da Silva FC, Ferreira PG, Boechat NA, Magalhães JL. Expert Opin. Ther. Pat. 2013; 23: 319
    • 4e Zhou C.-H, Wang Y. Curr. Med. Chem. 2012; 19: 239
    • 5a Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, Thareja S, Yadav JP, Pathak P, Grishina M. Pharmaceuticals 2023; 16: 299
    • 5b Lang DK, Kaur R, Arora R, Saini B, Arora S. Anti-Cancer Agents Med. Chem. 2020; 20: 2150
    • 5c Amin A, Qadir T, Sharma PK, Jeelani I, Abe H. Open J. Med. Chem. 2022; 16: e187410452209010
    • 6a Huo L.-Q, Shi L.-L, Fu J.-K. Eur. J. Org. Chem. 2022; e202200454
    • 6b Schmidt NG, Eger E, Kroutil W. ACS Catal. 2016; 6: 4286
    • 6c Wang C, Zhang Y, Sun K, Yu T, Liu F, Wang X. Molecules 2023; 28: 1998
    • 7a Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
    • 7b Dutta S, Kumar P, Yadav S, Sharma RD, Shivaprasad P, Vimaleswaran KS, Sharma RK. Catal. Commun. 2023; 175: 106615
    • 7c Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
    • 7d Kumar DV, Chethan BS, Gowda D, Rangappa KS, Lokanath NK. J. Mol. Struct. 2023; 1288: 135770
    • 8a Qian XY, Li SQ, Song J, Xu HC. ACS Catal. 2017; 7: 2730
    • 8b Netalkar PP, Netalkar SP, Budagumpi S, Revankar VK. Eur. J. Med. Chem. 2014; 79: 47
    • 9a Ma R, Ding Y, Chen R, Wang Z, Wang L, Ma Y. J. Org. Chem. 2021; 86: 310
    • 9b Gao X, Liu J, Zuo X, Feng X, Gao Y. Molecules 2020; 25: 1675
    • 9c Rouf A, Tanyeli C. Eur. J. Med. Chem. 2015; 97: 911
    • 9d Haider K, Shrivatava N, Pathak A, Dewamgen RP, Yahya S, Yar MS. Results Chem. 2022; 4: 100258
    • 10a Xu W, Zeng M.-T, Liu M, Liu S.-S, Li Y.-S, Dong Z.-B. Synthesis 2017; 49: 3084
    • 10b Dey A, Hajra A. Org. Lett. 2019; 21: 1686
    • 10c Ammazzalorso A, Carradori S, Amoroso R, Fernández IF. Eur. J. Med. Chem. 2020; 207: 112762
    • 10d Sharma PC, Sinhmar A, Sharma A, Rajak H, Pathak DP. J. Enzyme Inhib. Med. Chem. 2013; 28: 240
    • 10e Keri RS, Patil MR, Patil SA, Budagumpi S. Eur. J. Med. Chem. 2015; 89: 207
    • 11a Azzam RA, Osman RR, Elgemeie GH. ACS Omega 2020; 5: 1640
    • 11b Hu R, Li X, Tong Y, Miao D, Pan Q, Jiang Z, Han S. Synlett 2016; 27: 1387
    • 11c Dhadda S, Raigar AK, Saini K, Manju, Guleria A. Sustainable Chem. Pharm. 2021; 24: 100521
    • 11d Gill RK, Rawal RK, Bariwal J. Arch. Pharm. 2015; 348: 155
    • 13a Hutchinson I, Stevens MF. G, Westwel AD. Tetrahedron Lett. 2000; 41: 425
    • 13b Benedi C, Bravo F, Uriz P, Fernandez E, Claver C, Castillon S. Tetrahedron Lett. 2003; 44: 6073
    • 13c Joyce LL, Evindar G, Batey RA. Chem. Commun. 2004; 446
    • 13d Mu XJ, Zou JP, Zeng RS, Wu JC. Tetrahedron Lett. 2005; 46: 4345
    • 13e Moghaddam FM, Boeini HZ. Synlett 2005; 1612
    • 13f Evindar G, Batey RA. J. Org. Chem. 2006; 71: 1802
    • 13g Itoh T, Mase T. Org. Lett. 2007; 9: 3687
    • 13h Downer-Riley NK, Jackson YA. Tetrahedron 2008; 64: 7741
  • 14 Zhang X, Zeng W, Yang Y, Huang H, Liang Y. Org. Lett. 2014; 16: 876
  • 15 Wang K, Zhang J, Hu R, Liu C, Bartholome TA, Ge H, Li B. ACS Catal. 2022; 12: 2796
  • 16 Huang Y, Zhou P, Wu W, Jiang H. J. Org. Chem. 2018; 83: 2460
  • 17 Zhu X, Zhang F, Kuang D, Deng G, Yang Y, Yu J, Liang Y. Org. Lett. 2020; 22: 3789
    • 18a Kiran KR, Swaroop TR, Sukrutha KP, Shruthi JB, Anil SM, Rangappa KS, Sadashiva MP. Synthesis 2019; 51: 4205
    • 18b Kiran KR, Swaroop TR, Rajeev N, Anil SM, Rangappa KS, Sadashiva MP. Synthesis 2020; 52: 1444
    • 18c Kiran KR, Swaroop TR, Santhosh C, Rangappa KS, Sadashiva MP. ChemistrySelect 2021; 6: 7262
    • 18d Kumar KS. V, Swaroop TR, Rajeev N, Vinayaka AC, Lingaraju GS, Rangappa KS, Sadashiva MP. Synlett 2016; 27: 1363
    • 18e Rajeev N, Swaroop TR, Anil SM, Bommegowda YK, Rangappa KS, Sadashiva MP. Synlett 2017; 28: 2281
    • 18f Rajeev N, Swaroop TR, Anil SM, Kiran KR, Rangappa KS, Sadashiva MP. J. Chem. Sci. 2018; 130: 1
    • 18g Dukanya D, Swaroop TR, Rangappa KS, Basappa B. SynOpen 2019; 3: 71
    • 18h Rajeev N, Swaroop TR, Alrawashdeh AI, Rahman S, Alodhayb A, Anil SM, Sadashiva MP. Beilstein J. Org. Chem. 2020; 16: 159
    • 18i Anil SM, Sudhanva MS, Swaroop TR, Vinayaka AC, Rajeev N, Kiran KR, Sadashiva MP. Chem. Biodiversity 2020; 17: e2000014
    • 18j Swaroop TR, Rangappa KS, Torun L. ChemistrySelect 2021; 6: 177
    • 18k Sukrutha KP, Swaroop TR, Preetham R, Lokanath NK, Rangappa KS, Sadashiva MP. Synth. Commun. 2021; 51: 2316
    • 18l Singh KR, Santhosh C, Swaroop TR, Sadashiva MP. Org. Biomol. Chem. 2022; 20: 5771
    • 18m Preetham R, Vijaya Kumar MS, Swaroop TR, Divyashree S, Kiran KR, Sreenivasa MY, Rangappa KS, Sadashiva MP. ChemistrySelect 2022; 7: e202203079
    • 18n Santhosh C, Singh KR, Sheela K, Swaroop TR, Sadashiva MP. J. Org. Chem. 2023; 88: 11486
  • 19 CCDC 2280983 (4d) and CCDC 2278486 (5m) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 20 Fiorentino F, Mai A, Rotili D. Front. Pharmacol. 2020; 11: 1243
    • 21a Copp JN, Neilan BA. Appl. Environ. Microbiol. 2006; 72: 2298
    • 21b Stachelhaus T, Hüser A, Marahiel MA. Chem. Biol. 1996; 3: 913
  • 22 Pearson CR, Tindall SN, Herman R, Jenkins HT, Bateman A, Thomas GH, Potts JR, Van der Woude MW. mBio 2020; 11: e01364-20
  • 23 Divyashree S, Anjali PG, Somashekaraiah R, Sreenivasa MY. Biotechnol. Rep. 2021; 32: e00672
  • 24 Divyashree S, Anjali PG, Deepthi BV, Somashekaraiah R, Mottawea W, Hammami R, Sreenivasa MY. S. Afr. J. Bot. 2022; 150: 861