CC BY ND NC 4.0 · SynOpen 2019; 03(03): 71-76
DOI: 10.1055/s-0039-1690328
letter
Copyright with the author

Cyclization of Activated Methylene Isocyanides with Methyl N(N),N′-Di(tri)substituted Carbamimidothioate: A Novel Entry for the Synthesis of N,1-Aryl-4-tosyl/ethoxycarbonyl-1H-imidazol-5-amines

Dukanya Dukanya
a   Department of Studies in Organic Chemistry, University of Mysore, Manasagangothri, Mysuru 570 006, Karnataka, India, swarooptr@gmail.com   eMail: salundibasappa@gmail.com
,
Toreshettahally R. Swaroop
a   Department of Studies in Organic Chemistry, University of Mysore, Manasagangothri, Mysuru 570 006, Karnataka, India, swarooptr@gmail.com   eMail: salundibasappa@gmail.com
,
Shobith Rangappa
c   Adichunchangiri Institute for Molecular Medicine, Nagamangala 571448, Karnataka, India
,
Kanchugarakoppal S. Rangappa
b   Department of Studies in Chemistry, University of Mysore, Manasagangothri, Mysuru 570 006, Karnataka, India   eMail: rangappaks@gmail.com
,
Basappa Basappa
a   Department of Studies in Organic Chemistry, University of Mysore, Manasagangothri, Mysuru 570 006, Karnataka, India, swarooptr@gmail.com   eMail: salundibasappa@gmail.com
› Institutsangaben

This research was supported by University Grants Commission (UGC) and Israel Science Foundation (ISF) (ISF-UGC; F.NO. 6-6/2016(IC)); Council of Scientific and Industrial Research (CSIR; No. 02(0291)/ 17/EMR-II), Department of Biotechnology, Ministry of Science and Technology (DBT; No. BT/PR/8064/BID/7/441/2013), and the Vision Group on Science and Technology (VGST/CESEM-637/2018).
Weitere Informationen

Publikationsverlauf

Received: 27. Juni 2019

Accepted after revision: 29. Juli 2019

Publikationsdatum:
19. August 2019 (online)


Abstract

Base-induced cyclization of active methylene isocyanides with carbamimidothioates for the synthesis of N,1-aryl-4-tosyl/ethylcarboxy-1H-imidazol-5-amines is reported. The diversity of the reactions is exemplified by using various carbamimidothioates obtained from symmetrical N,N-disubstituted, unsymmetrical N,N,N-trisubstituted, and unsymmetrical N,N-disubstituted thioureas. This diversity is further enriched by different isocyanides. A mechanism for the formation of the title compounds is proposed.

Supporting Information

 
  • References and Notes

  • 3 Hadizadeh F, Hosseinzadeh H, Motamed-Shariaty VS, Seifi M, Kazemi S. Iran. J. Pharm. Res. 2008; 7: 29
  • 5 Tonelli M, Simone M, Tasso B, Novelli F, Boido V. Bioorg. Med. Chem. 2010; 18: 2937
  • 6 Bhandari K, Srinivas N, Marrapu VK, Verma A, Srivastava S, Gupta S. Bioorg. Med. Chem. Lett. 2010; 20: 291
    • 8a Laufer SA, Hauser DR. J, Domeyer DM, Kinkel K, Liedtke AJ. J. Med. Chem. 2008; 51: 4122
    • 8b Young PR, McLaughlin MM, Kumari S, Kassisi S, Doyle ML, McNulty D, Gallagher TF, Fisher S, McDonnell PC, Carr SA, Huddleston MJ, Seibel G, Porter TG, Livi GP, Adams JP, Lee JC. J. Biol. Chem. 1997; 272: 12116
  • 9 Sun B, Liu K, Han J, Zhao L.-Y, Su X, Lin B, Zhao DM, Cheng MS. Bioorg. Med. Chem. 2015; 23: 6763
  • 10 Gînther M, Juchum M, Kelter G, Fiebig H, Laufer S. Angew. Chem. Int. Ed. 2016; 55: 10890
  • 11 Kinobe RT, Vlahakis JZ, Vreman HJ, Stevenson DK, Brien JF, Szarek WA, Nakatsu K. Br. J. Pharmacol. 2006; 147: 307
  • 12 Roumen L, Peeters JW, Emmen JM. A, Beugels IP. E, Custers EM. G, de Gooyer M, Plate R, Pieterse K, Hilbers PA. J, Smits JF. M, Vekemans JA. J, Leysen D, Ottenheijm HC. J, Janssen HM, Hermans JJ. R. J. Med. Chem. 2010; 53: 1712
  • 13 Bressi JC, Jong R, Wu Y, Jennings AJ, Brown JW, O’Conwell S, Tari LW, Skene RJ, Vu P, Narve M, Cao X, Gangloff AR. Bioorg. Med. Chem. Lett. 2010; 20: 3138
  • 14 Hu Q, Negri M, Jahn-Hoffmann K, Zhuang Y, Olgen S, Bartels M, Muller-Vieira U, Lauterbach T, Hartman RW. Bioorg. Med. Chem. 2008; 16: 7715
  • 15 Zhan P, Liu X, Zhu J, Fang Z, Li Z, Pannecouque C, De Clercq E. Bioorg. Med. Chem. 2009; 17: 5775
  • 17 Munk SA, Harcourt DA, Arasasingham PN, Burke JA, Kharlamb AB, Manlapaz CA, Padillo EU, Roberts D, Runde E, Williams L, Wheeler LA, Garst ME. J. Med. Chem. 1997; 40: 18
  • 18 Galley G, Stalder H, Goergler A, Hoener MC, Norcross RD. Bioorg. Med. Chem. Lett. 2012; 22: 5244
  • 19 Madsen C, Jensen AA, Liljefors T, Kristiansen U, Nielsen B, Hansen CP, Larsen M, Ebert B, Bang-Andersen B, Krogsgaard-Larsen P, Frølund B. J. Med. Chem. 2007; 50: 4147
  • 20 Yanagisawa H, Amemiya Y, Kanazaki T, Shimoji Y, Fujimoto Y, Kitahara Y, Sada T, Mizuno M, Ikeda M, Miyamoto S, Furukawa Y, Koike H. J. Med. Chem. 1996; 39: 323
  • 21 Calderara S, Xiang Y, Moss B. Virology 2001; 279: 22
  • 22 Ganellin CR, Leurquin F, Piripitsi A, Arrang J.-M, Garbarg M, Ligneau X, Schunack W, Schwartz J.-C. Arch. Pharm. 1998; 331: 395
  • 23 Chan GW, Mong S, Hemling ME, Freyer AJ, Offen PH, DeBrosse CW, Sarau HM, Westley JW. J. Nat. Prod. 1993; 56: 116
    • 24a Lunt E, Newton CG, Smith C, Stevens GP, Stevens MF, Straw CG, Walsh RJ, Warren PJ, Fizames C, Lavelle F. J. Med. Chem. 1987; 30: 357
    • 24b Hoffman K. Imidazoles and Its Derivatives . Interscience; New York: 1953: 143-145
    • 24c Bredereck H, Gompper R, Hayer D. Chem. Ber. 1959; 92: 338
    • 24d Five-Membered Heterocycles Containing Two Heteroatoms and Their Benzo Derivatives. In Heterocyclic Compounds, Vol. 5. Elderfield RC. Wiley; New York: 1957. 744
  • 25 Pardeshi SD, Sathe PA, Vadagaonkar KS, Melone L, Chaskar AC. Synthesis 2018; 50: 361
  • 26 Tang D, Wu P, Liu X, Chen Y.-X, Guo S.-B, Chen W.-L, Li J.-G, Chen B.-H. J. Org. Chem. 2013; 78: 2746
  • 27 Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
  • 28 Li J, Neuville L. Org. Lett. 2013; 15: 1752
  • 29 Zhu Y, Li C, Zhang J, She M, Sun W, Wan K, Wang Y, Yin B, Liu P, Li J. Org. Lett. 2015; 17: 3872
  • 30 Rajaguru K, Suresh R, Mariappan A, Muthusubramanian S, Bhuvanesh N. Org. Lett. 2014; 16: 744
  • 31 Guo X, Chen W, Chen B, Huang W, Qi W, Zhang G, Yu Y. Org. Lett. 2015; 17: 1157
  • 32 Wang Y, Shen H, Xie Z. Synlett 2011; 969
  • 33 Xiong J, Wei X, Liu Z.-M, Ding M.-W. J. Org. Chem. 2017; 82: 13735
  • 35 Guchhait SK, Hura N, Shah AP. J. Org. Chem. 2017; 82: 2745
  • 36 Hao W, Jiang Y, Cai M. J. Org. Chem. 2014; 79: 3634
    • 38a Eger WA, Gronge RL, Schill H, Goumont R, Clark T, Williams CM. Eur. J. Org. Chem. 2001; 2549
    • 38b Kanazawa C, Kamijo S, Yamamoto Y. J. Am. Chem. Soc. 2006; 128: 10662
  • 40 van Nispen SP. J. M, Mensink C, van Leusen AM. Tetrahedron Lett. 1980; 21: 3723
  • 41 Kreutzberger A, Kolter K. Chem.-Ztg. 1986; 110: 256
  • 42 Taylor EC, Laattina JL, Tseng CP. J. Org. Chem. 1982; 47: 2043
  • 45 Murakami T, Otsuka M, Ohno M. Tetrahedron Lett. 1982; 23: 4729
  • 46 Bonin MA, Giguere D, Roy R. Tetrahedron 2007; 63: 4912
  • 47 Suzuki M, Moriya T, Matsumoto K, Miyoshi M. Synthesis 1982; 874
  • 48 Bossio R, Marcaccini S, Pepino R, Polo C, Valle G. Synthesis 1989; 641
  • 49 Helal CJ, Lucas JC. Org. Lett. 2002; 4: 4133
  • 50 Elders N, van der Born D, Hendrickx LJ. D, Timmer BJ. J, Krause A, Jassen E, de Kanter FJ. J, Ruijter E, Orru RV. A. Angew. Chem. Int. Ed. 2009; 48: 5856
  • 52 Rajeev N, Swaroop TR, Anil SM, Kiran KR, Rangappa KS, Sadashiva MP. J. Chem. Sci. 2018; 130: 150
  • 53 Vinay Kumar KS, Swaroop TR, Rajeev N, Vinayaka AC, Lingaraju GS, Rangappa KS, Sadashiva MP. Synlett 2016; 27: 1363
  • 54 Synthesis of Substituted Thioureas 3; General Procedure: A mixture of arylisothiocyanate 1 (10 mmol), amine 2 (10 mmol) and triethylamine (0.1 mmol) in dichloromethane (10 mL) was stirred for 1–2 h. The progress of the reaction was monitored by TLC and, after completion, the dichloromethane was removed under reduced pressure. The residue was treated with conc. HCl (1 mL) in water (50 mL) and filtered. The precipitate was washed with water, drained, and dried at room temperature.1,3-Diphenylthiourea (3a): Yield: 89%; white solid; mp 150–153 °C. 1H NMR (DMSO-d 6, 400 MHz): δ = 8.19 (s, 2 H, NH), 7.35–7.41 (m, 8 H, Ar-H), 7.24–7.28 (m, 2 H, Ar-H). 13C NMR (DMSO-d 6, 100 MHz): δ = 179.6, 137.1, 129.6, 127.1, 125.3. HRMS (ESI-TOF): m/z [M + H]+ calcd for C13H13N2S: 229.0799; found: 229.0790.
  • 55 Synthesis of Carbamimidothioates 4; General Procedure: To a solution of substituted thiourea 3 (8 mmol) in benzene (20 mL) and 20% NaOH (20 mL), tetra-n-butylammonium bromide (0.8 mmol) and MeI (8 mmol) were added. The progress of the reaction was monitored by TLC and, after the completion of the reaction, the organic layer was separated and the aqueous layer was extracted with ethyl acetate (2 × 20 mL). The combined organic layers were washed with water (25 mL), brine (25 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain the crude product, which was purified by column chromatography over silica gel, eluting with hexane/ethyl acetate (8:2).Methyl N,N′-Diphenylcarbamimidothioate (4a): Yield: 95%; white solid; mp 95–100 °C. 1H NMR (CDCl3, 400 MHz): δ = 7.08–7.33 (m, 10 H, Ar-H), 6.34 (s, 1 H, NH), 2.30 (s, 3 H, SCH3). 13C NMR (CDCl3, 100 MHz): δ = 150.0, 131.6, 129.0, 123.1, 134.0, 131.4, 123.5, 121.6, 121.1, 14.5. HRMS (ESI-TOF): m/z [M + H]+ calcd for C14H15N2S: 243.0955; found: 243.0950.
  • 56 Synthesis of Imidazole 6; General Procedure: To a solution of sodium hydride (6 mmol) in DMF (3 mL), substituted carbamimidothioate 4 (3 mmol) and tosylmethyl isocyanide/ethyl isocyanoacetate 5 (3 mmol) were added at 0 °C. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. After completion of the reaction, water (25 mL) was added and the mixture was extracted with ethyl acetate (3 × 25 mL), the combined organic phases were washed with brine (25 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give the crude product, which was purified by column chromatography over silica gel, eluting with hexane/ethyl acetate (8:2). N,1-Diphenyl-4-tosyl-1H-imidazol-5-amine (6a): Yield: 77%; brown solid; mp 204–209 °C. 1H NMR (CDCl3, 400 MHz): δ = 7.79 (d, J = 8.0 Hz, 2 H, Ar-H), 7.49 (s, 1 H, Ar-H), 7.25–7.28 (m, 2 H, Ar-H), 7.20–7.25 (m, 4 H, Ar-H), 6.97–7.00 (m, 2 H, Ar-H), 6.89 (s, 1 H, Ar-H), 6.78–6.80 (m, 2 H, Ar-H), 6.60 (d, J = 8.0 Hz, 2 H, Ar-H), 2.36 (s, 3 H, CH3). 13C NMR (CDCl3, 100 MHz): δ = 143.9, 142.1, 138.6, 136.2, 134.7, 129.6, 129.4, 128.9, 128.7, 128.1, 127.5, 126.1, 124.2, 122.1, 117.7, 29.6. HRMS (ESI-TOF): m/z [M + H]+ calcd for C22H20N3O2S: 390.1276; found: 390.1274.