Synlett 2023; 34(06): 572-600
DOI: 10.1055/a-1921-0748
account
Chemical Synthesis and Catalysis in India

Advances in Bifunctional Squaramide-Catalyzed Asymmetric Sulfa-Michael Addition: A Decade Update

Steeva Sunny
,
Mohit Maingle
,
S.S. and M.M. sincerely thank the Department of Pharmaceuticals (DoP), Govt. of India for their fellowship. K.S. acknowledges a start-up research grant from National Institute of Pharmaceutical Education and Research (NIPER-Guwahati).


Abstract

The application of bifunctional organocatalysts in organic chemistry has advanced remarkably owing to their high stability to moisture and air, relatively low toxicity, ease of handling, and recoverability. Among chiral bifunctional organocatalysts, squaramides have emerged as a privileged catalyst in recent years. This review article presents a comprehensive report on fine-tunable bifunctional chiral squaramide-catalyzed sulfa-Michael addition, which is based upon synchronous interplay of synergistic ‘electrophilic–nucleophilic’ dual activation strategies via multiple H-bonding interactions for the construction of both common and complex molecular entities bearing multiple stereocenters. Mechanistic discussions are kept brief, but significant understandings have been recorded. The contribution of squaramide catalyst to the construction of C–S bonds via sulfa-Michael addition has been applied in medicinal, natural, and industrial chemistry. Attention is focused on summarizing the progress made in chiral squaramide-catalyzed asymmetric sulfa-Michael addition and subsequent cascade/domino reaction sequences between 2011 and 2022.

1 Introduction

2 Quinine-Squaramide Organocatalysis

3 Iminophosphorane-Squaramide Organocatalysis

4 Chinchona-Squaramide Organocatalysis

5 trans-1,2-Diaminocyclohexane-Squaramide Organocatalysis

6 Conclusion



Publication History

Received: 26 May 2022

Accepted after revision: 08 August 2022

Accepted Manuscript online:
08 August 2022

Article published online:
13 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected recent reviews:
    • 1a Xiang S.-H, Tan B. Nat. Commun. 2020; 11: 3786
    • 1b Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
    • 1c Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 1d Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
    • 1e Jensen KL, Dickmeiss G, Jiang H, Albrecht Ł, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
    • 1f Akiyama T. Chem. Rev. 2007; 107: 5744
    • 1g Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 1h Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 1i List B. Chem. Rev. 2007; 107: 5413
    • 1j Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520

      Selected examples:
    • 2a Han B, He X.-H, Liu Y.-Q, He G, Peng C, Li J.-L. Chem. Soc. Rev. 2021; 50: 1522
    • 2b Rai P, Sagir H, Kumar A, Yadav VB, Siddiqui IR. ChemistrySelect 2018; 3: 2565
    • 2c Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
    • 2d Nising CF, Bräse S. Chem. Soc. Rev. 2008; 37: 1218
    • 2e de Figueiredo RM, Christmann M. Eur. J. Org. Chem. 2007; 2575
    • 2f Kotke M, Schreiner PR. Synthesis 2007; 779
    • 2g Suri JT, Steiner DD, Barbas CF. III. Org. Lett. 2005; 7: 3885
    • 2h Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
    • 3a Zhou H, Zhou Y, Bae HY, Leutzsch M, Li Y, De CK, Cheng G.-J, List B. Nature 2022; 605: 84
    • 3b McMillan DW. C. Nature 2008; 455: 304
    • 3c Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
    • 3d Pellissier H. Tetrahedron 2007; 63: 9267
    • 3e Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
    • 3f Halland N, Hansen T, Jørgensen KA. Angew. Chem. Int. Ed. 2003; 42: 4955

      Selected recent examples:
    • 4a Guo F, Chen J, Huang Y. ACS Catal. 2021; 11: 6316
    • 4b Sharma P, Gupta R, Bansal RK. Beilstein J. Org. Chem. 2021; 17: 2585
    • 4c Phelan JP, Ellman JA. Beilstein J. Org. Chem. 2016; 12: 1203
    • 4d Cho B, Wong MW. Molecules 2015; 20: 15108
    • 4e Yu Z, Liu X, Zhou L, Lin L, Feng X. Angew. Chem. Int. Ed. 2009; 48: 5195
  • 5 Enders D, Lüttgen K, Narine AA. Synthesis 2007; 959
  • 6 Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
    • 7a Ni X, Li X, Wang Z, Cheng J.-P. Org. Lett. 2014; 16: 1786
    • 7b Storer RI, Aciro C, Jones LH. Chem. Soc. Rev. 2011; 40: 2330
    • 7c Quiñonero D, Prohens R, Garau C, Frontera A, Ballester P, Costa A, Deyá PM. Chem. Phys. Lett. 2002; 351: 115
    • 7d Tomàs S, Prohens R, Vega M, Rotger MC, Deyá PM, Ballester P, Costa A. J. Org. Chem. 1996; 61: 9394
  • 8 Cohen S, Cohen SG. J. Am. Chem. Soc. 1966; 88: 1533

    • Selected recent examples of Michael addition:
    • 9a Kucherenko AS, Kostenko AA, Komogortsev AN, Lichitsky BV, Fedotov MY, Zlotin SG. J. Org. Chem. 2019; 84: 4304
    • 9b Zhao M.-X, Zhu G.-Y, Zhao X.-L, Shi M. Tetrahedron 2019; 75: 1171
    • 9c Yang Z.-T, Zhao J, Yang W.-L, Deng W.-P. Org. Lett. 2019; 21: 1015
    • 9d Chhanda SA, Itsuno S. J. Catal. 2019; 377: 543
    • 9e Li X, Wang Z, Sun J, Gao J, Zhao Y, Cheng P, Aguila B, Ma S, Chen Y, Zhang Z. Chem. Commun. 2019; 55: 5423
    • 9f Valle M, Martín L, Maestro A, Andrés JM, Pedrosa R. Polymers 2019; 11: 13
    • 9g Kisszekelyi P, Alammar A, Kupai J, Huszthy P, Barabas J, Holtzl T, Szente L, Bawn C, Adams R, Szekely G. J. Catal. 2019; 371: 255
    • 9h Kostenko AA, Kucherenko AS, Komogortsev AN, Lichitsky BV, Zlotin SG. Org. Biomol. Chem. 2018; 16: 9314
    • 9i Grayson MN. J. Org. Chem. 2017; 82: 4396
    • 9j Zhang X.-L, Tang C.-K, Xia A.-B, Feng K.-X, Du X.-H, Xu D.-Q. Eur. J. Org. Chem. 2017; 3152
    • 9k Kaya U, Chauhan P, Hack D, Deckers K, Puttreddy R, Rissanen K, Enders D. Chem. Commun. 2016; 52: 1669
    • 9l Zhao M.-X, Zhu H.-K, Dai T.-L, Shi M. J. Org. Chem. 2015; 80: 11330
    • 9m Bera K, Namboothiri IN. N. Org. Biomol. Chem. 2014; 12: 6425
    • 9n Zhong Y, Ma S, Xu Z, Chang M, Wang R. RSC Adv. 2014; 4: 49930
    • 9o Zhou E, Liu B, Dong C. Tetrahedron: Asymmetry 2014; 25: 181
    • 9p Bera K, Namboothiri IN. N. Chem. Commun. 2013; 49: 10632
    • 9q Yang KS, Nibbs AE, Türkmen YE, Rawal VH. J. Am. Chem. Soc. 2013; 135: 16050
    • 9r Kasaplar P, Rodríguez-Escrich C, Pericàs MA. Org. Lett. 2013; 15: 3498
    • 9s Kardos G, Soós T. Eur. J. Org. Chem. 2013; 4490
    • 9t Baran R, Veverková E, Škvorcová A, Šebesta R. Org. Biomol. Chem. 2013; 11: 7705
    • 9u Li J.-H, Du D.-M. Org. Biomol. Chem. 2013; 11: 6215

      Selected recent examples of aza-/oxa-/phospha-Michael addition:
    • 10a Son EC, Kim SY, Kim S.-G. J. Org. Chem. 2021; 86: 6826
    • 10b Sharma P, Gupta R, Bansal RK. Beilstein J. Org. Chem. 2021; 17: 2585
    • 10c Tang Q.-G, Cai S.-L, Wang C.-C, Lin G.-Q, Sun X.-W. Org. Lett. 2020; 22: 3351
    • 10d Tukhvatshin RS, Kucherenko AS, Nelyubina YV, Zlotin SG. Eur. J. Org. Chem. 2018; 7000
    • 10e Zhu Y, Malerich JP, Rawal VH. Angew. Chem. Int. Ed. 2010; 49: 153
    • 11a Marchetti LA, Kumawat LK, Mao N, Stephens JC, Elmes RB. P. Chem 2019; 5: 1398
    • 11b Alemán J, Parra A, Jiang H, Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
    • 11c Davis AP, Draper SM, Dunne G, Ashton P. Chem. Commun. 1999; 2265
    • 12a Rotger C, Soberats B, Quiñonero D, Frontera A, Ballester P, Benet-Bucholtz J, Deyà PM, Costa A. Eur. J. Org. Chem. 2008; 1864
    • 12b Quiñonero D, Frontera A, Ballester P, Deyà PM. Tetrahedron Lett. 2000; 41: 2001
  • 13 Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
  • 14 Schulz F, Sumerin V, Heikkinen S, Pedersen B, Wang C, Atsumi M, Leskelä M, Repo T, Pyykkö P, Petry W, Rieger B. J. Am. Chem. Soc. 2011; 133: 20245
  • 15 Amendola V, Bergamaschi G, Boiocchi M, Fabbrizzi L, Milani M. Chem. Eur. J. 2010; 16: 4368
  • 16 Quiñonero D, Frontera A, Suñer GA, Morey J, Costa A, Ballester P, Deyà PM. Chem. Phys. Lett. 2000; 326: 247
  • 17 Ramalingam V, Domaradzki ME, Jang S, Muthyala RS. Org. Lett. 2008; 10: 3315
    • 18a Usuda H, Kuramochi A, Kanai M, Shibasaki M. Org. Lett. 2004; 6: 4387
    • 18b Davies HM. L, Jin Q. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5472
    • 18c Kanemasa S, Kanai T. J. Am. Chem. Soc. 2000; 122: 10710
    • 18d Comprehensive Asymmetric Catalysis, Vols. I–III. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 1999
  • 19 Khatik GL, Kumar R, Chakraborti AK. Org. Lett. 2006; 8: 2433
    • 20a Lađarević J, Božić B, Matović L, Nedelijković BB, Mijin D. Dyes Pigm. 2019; 162: 562
    • 20b Feldblum ES, Arkin IT. Proc. Natl. Acad. Sci. U.S.A. 2014; 111: 4085
    • 20c Rozas I, Alkorta I, Elguero J. J. Phys. Chem. A 1998; 102: 9925
    • 20d Giguère PA. J. Raman Spectrosc. 1984; 15: 354
  • 21 Chakraborti AK, Sharma L, Nayak MK. J. Org. Chem. 2002; 67: 2541
    • 22a Chebolu R, Kommi DN, Kumar D, Bollineni N, Chakraborti AK. J. Org. Chem. 2012; 77: 10158
    • 22b Zheng Y, Zhang J. ChemPhysChem 2010; 11: 65
    • 22c Jung Y, Marcus RA. J. Am. Chem. Soc. 2007; 129: 5492

      Selected examples:
    • 23a Seth K, Raha Roy S, Pipaliya BV, Chakraborti AK. Chem. Commun. 2013; 49: 5886
    • 23b Kumar D, Seth K, Kommi DN, Bhagat S, Chakraborti AK. RSC Adv. 2013; 3: 15157
    • 23c Kommi DN, Kumar D, Seth K, Chakraborti AK. Org. Lett. 2013; 15: 1158
    • 23d Kommi DN, Jadhavar PS, Kumar D, Chakraborti AK. Green Chem. 2013; 15: 798
    • 23e Kommi DN, Kumar D, Chakraborti AK. Green Chem. 2013; 15: 756
  • 24 Guo J, Wong MW. J. Org. Chem. 2017; 82: 4362
    • 25a Popova EA, Pronina YA, Davtian AV, Nepochatyi GD, Petrov ML, Boitsov VM, Stepakov AV. Russ. J. Gen. Chem. 2022; 92: 287
    • 25b Zhao B.-L, Li J.-H, Du D.-M. Chem. Rec. 2017; 17: 994
    • 25c Chauhan P, Mahajan S, Kaya U, Hack D, Enders D. Adv. Synth. Catal. 2015; 357: 253

      Selected examples:
    • 26a Liu X.-Y, Qin Y. Green Synth. Catal. 2022; 3: 25
    • 26b Taber DF, Tirunahari PK. Tetrahedron 2011; 67: 7195
    • 26c Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 26d Gupta L, Talwar A, Palne NS, Gupta S, Chauhan PM. S. Bioorg. Med. Chem. Lett. 2007; 17: 4075
    • 26e Somei M, Yamada F. Nat. Prod. Rep. 2005; 22: 73
    • 26f Skibo EB, Xing C, Dorr RT. J. Med. Chem. 2001; 44: 3545
    • 26g Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000; 1045
    • 26h Sundberg RJ. Indoles . Meth-Cohn O. Academic Press; San Diego: 1996
    • 27a Benetti S, Risi CD, Pollini GP, Zanirato V. Chem. Rev. 2012; 112: 2129
    • 27b Gallienne E, Benazza M, Demailly G, Bolte J, Lemaire M. Tetrahedron 2005; 61: 4557
    • 27c Qiao C, Ling K.-Q, Shepard EM, Dooley DM, Sayre LM. J. Am. Chem. Soc. 2006; 128: 6206
    • 27d Wirsching J, Voss J, Adiwidjaja G, Balzarini J, Clercq ED. Bioorg. Med. Chem. Lett. 2001; 11: 1049
    • 27e Clercq PJ. D. Chem. Rev. 1997; 97: 1755
  • 28 Li Y.-H, Zhao B.-L, Gao Y, Du D.-M. Tetrahedron: Asymmetry 2014; 25: 1513

    • Selected examples:
    • 29a Palmo C, Oiarbide M, Dias F, Ortiz A, Linden A. J. Am. Chem. Soc. 2001; 123: 5602
    • 29b Apfel C, Banner DW, Bur D, Dietz M, Hirata T, Hubschwerlen C, Locher H, Page MG. P, Pirson W, Rossé G, Specklin J.-L. J. Med. Chem. 2000; 43: 2324
    • 29c Procter DJ. J. Chem. Soc., Perkin Trans. 1 1999; 641
    • 29d Groneberg RD, Burns CJ, Morrissette MM, Ullrich JW, Morris RL, Darnbrough S, Djuric SW, Condon SM, McGeehan GM, Labaudiniere R, Neuenschwander K, Scotese AC, Kline JA. J. Med. Chem. 1999; 42: 541
    • 29e Beszant B, Bird J, Gaster LM, Harper GP, Hughes I, Karran EH, Markwell RE, Miles-Williams AJ, Smith SA. J. Med. Chem. 1993; 36: 4030
  • 30 Liu Y, Sun B, Wang B, Wakem M, Deng L. J. Am. Chem. Soc. 2009; 131: 418
  • 31 Dai L, Yang H, Chen F. Eur. J. Org. Chem. 2011; 5071
  • 32 Paul A, Thomas R. ChemRxiv 2021; preprint DOI: 10.26434/chemrxiv-2021-26ltj.
  • 33 Annunziata R, Cinquini M, Cozzi F, Raimondi L. Tetrahedron Lett. 1988; 29: 2881
  • 34 Zhao B.-L, Du D.-M. RSC Adv. 2014; 4: 27346
  • 35 Laurence C, Mansour S, Vuluga D, Planchat A, Legros J. J. Org. Chem. 2021; 86: 4143

    • Selected examples:
    • 36a Keller B, Cai Z, Muthike AK, Sahu PK, Kim H, Eshun A, Zimmerman PM, Zhang D, Goodson TIII. J. Phys. Chem. C 2018; 122: 27713
    • 36b Romiszewski J, Puterová-Tokarová Z, Mieczkowski J, Gorecka E. New J. Chem. 2014; 38: 2927
    • 36c O’Connor CJ, Roydhouse MD, Przybył AM, Wall MD, Southern JM. J. Org. Chem. 2010; 75: 2534
    • 36d Li Y, Vamvounis G, Holdcroft S. Macromolecules 2002; 18: 6900

      Selected examples:
    • 37a Mondal B, Nandi S, Pan SC. Eur. J. Org. Chem. 2017; 4666
    • 37b Brandau S, Maerten E, Jørgensen KA. J. Am. Chem. Soc. 2006; 128: 14986
    • 37c Julienne K, Metzner P, Henryon V. J. Chem. Soc., Perkin Trans. 1 1999; 731
    • 37d Hauptman E, Shapiro R, Marshall W. Organometallics 1998; 17: 4976
    • 37e Julienne K, Metzner P. J. Org. Chem. 1998; 63: 4532

      Selected examples:
    • 38a Diana EJ, Kanchana US, Mathew TV. Org. Biomol. Chem. 2021; 19: 7995
    • 38b Grigalunas M, Burhop A, Zinken S, Pahl A, Gally J.-M, Wild N, Mantel Y, Sievers S, Foley DJ, Scheel R, Strohmann C, Antonchick AP, Waldmann H. Nat. Commun. 2021; 12: 1883
    • 38c Emami S, Ghanbarimasir Z. Eur. J. Med. Chem. 2015; 93: 539
    • 38d Fridén-Saxin M, Seifert T, Landergren MR, Suuronen T, Lahtela-Kakkonen M, Jarho EM, Luthman K. J. Med. Chem. 2012; 55: 7104
  • 39 Zhao B.-L, Liu L, Du D.-M. Eur. J. Org. Chem. 2014; 7850

    • Selected examples:
    • 40a Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
    • 40b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 40c Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 40d Shah P, Westwell AD. J. Enzyme Inhib. Med. Chem. 2007; 22: 527

      Selected examples:
    • 41a Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
    • 41b Das P, Tokunaga E, Shibata N. Tetrahedron Lett. 2017; 58: 4803
    • 41c Besset T, Jubault P, Pannecoucke X, Poisson T. Org. Chem. Front. 2016; 3: 1004
    • 41d Huang Y.-Y, Yang X, Chen Z, Verpoort F, Shibata N. Chem. Eur. J. 2015; 21: 8664
    • 41e Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
    • 41f Savoie PR, Welch JT. Chem. Rev. 2015; 115: 1130
    • 42a Kwiatkowski P, Dudziński K, Łyżwa D. Org. Lett. 2011; 13: 3624
    • 42b Wen S, Li P, Wu H, Yu F, Liang X, Ye J. Chem. Commun. 2010; 46: 4806
    • 42c Lu H.-H, Zhang F.-G, Meng X.-G, Duan S.-W, Xiao W.-J. Org. Lett. 2009; 11: 3946

      Selected examples:
    • 43a Pandey G, Mishra A, Khamrai J. Tetrahedron 2018; 74: 4903
    • 43b Liu Y, Han S.-J, Liu W.-B, Stoltz BM. Acc. Chem. Res. 2015; 48: 740
    • 43c Cozzi PG, Hilgraf R, Zimmermann N. Eur. J. Org. Chem. 2007; 5969
    • 43d Bella M, Gasperi T. Synthesis 2009; 1583
    • 43e Corey EJ, Guzman-Perez A. Angew. Chem. Int. Ed. 1998; 37: 388
  • 44 Su Y, Ling J.-B, Zhang S, Xu P.-F. J. Org. Chem. 2013; 78: 11053
  • 45 Ling J.-B, Su Y, Zhu H.-L, Wang G.-Y, Xu P.-F. Org. Lett. 2012; 14: 1090
    • 46a Guin S, Saha HK, Patel AK, Gudimella SK, Biswas S, Samanta S. Tetrahedron 2020; 76: 131338
    • 46b Chauhan P, Kaya U, Enders D. Adv. Synth. Catal. 2017; 359: 888
    • 46c Meng F, Li X, Torker S, Shi Y, Shen X, Hoveyda AH. Nature 2016; 537: 387
    • 46d Pei Q.-L, Sun H.-W, Wu Z.-J, Du X.-L, Zhang X.-M, Yuan W.-C. J. Org. Chem. 2011; 76: 7849
    • 46e Krause N. J. Org. Chem. 1992; 57: 3509
  • 47 Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
    • 48a Gürdere MB, Gezegen H, Budak Y, Ceylan M. Phosphorus, Sulfur Silicon Relat. Elem. 2012; 87: 889
    • 48b Hui Y, Jiang J, Wang W, Chen W, Cai Y, Lin L, Liu X, Feng X. Angew. Chem. Int. Ed. 2010; 49: 4290
    • 48c Dai L, Wang S.-X, Chen F.-E. Adv. Synth. Catal. 2010; 352: 2137
  • 49 Hasılcıoğulları D, Tanyeli C. Tetrahedron Lett. 2018; 59: 1414

    • The H-bonding in water model:
    • 50a Bakó I, Pusztai L, Temleitner L. Sci. Rep. 2017; 1073
    • 50b Takamuku T, Saisho K, Nozawa S, Yamaguchi T. J. Mol. Liq. 2005; 119: 133
    • 50c Khan A. J. Phys. Chem. B 2000; 104: 11268

      Selected examples:
    • 51a Duan J, Cheng Y, Li R, Li P. Org. Chem. Front. 2016; 3: 1614
    • 51b Pizzirani D, Roberti M, Grimaudo S, Cristina AD, Pipitone RM, Tolomeo M, Recanatini M. J. Med. Chem. 2009; 52: 6936
    • 51c Nicolaou KC, Montagnon T, Vassilikogiannakis G, Mathison CJ. N. J. Am. Chem. Soc. 2005; 127: 8872
  • 52 Mahajan S, Chauhan P, Blümel M, Puttreddy R, Rissanen K, Raabe G, Enders D. Synthesis 2016; 48: 1131

    • Selected examples:
    • 53a Alves NG, Alves AJ. S, Soares MI. L, Pinho e Melo TM. V. D. Adv. Synth. Catal. 2021; 363: 2464
    • 53b Alves NG, Bártolo I, Alves AJ. S, Frontina D, Francisco D, Lopes SM. M, Soares MI. L, Simões CJ. V, Prudêncio M, Taveira N, Pinho e Melo TM. V. D. Eur. J. Med. Chem. 2021; 219: 113439
    • 53c Alves AJ. S, Alves NG, Caratão CC, Esteves MI. M, Frontina D, Bártolo I, Soares MI. L, Prudêncio M, Taveira N, Pinho e Melo TM. V. D. Curr. Top. Med. Chem. 2020; 20: 140
    • 53d Benfatti F, Cardillo G, Gentilucci L, Tolomelli A. Bioorg. Med. Chem. Lett. 2007; 17: 1946

      Selected recent examples:
    • 54a Nájera C, Foubelo F, Sansano JM, Yus M. Tetrahedron 2022; 106-107: 132629
    • 54b Manna MS, Mukherjee S. Org. Biomol. Chem. 2015; 13: 18
    • 54c Kalstabakken KA, Harned AM. Tetrahedron 2014; 70: 957
    • 54d Maertens G, Ménard M.-A, Canesi S. Synthesis 2014; 46: 1573

      Selected recent examples:
    • 55a Costanzo M, Cortigiani M, Gillick-Healy MW, Kelly BG, Monasterolo C, Adamo MF. A. Eur. J. Org. Chem. 2021; 4560
    • 55b Li F, Wang J, Xu M, Zhao X, Zhou X, Zhao W.-X, Liu L. Org. Biomol. Chem. 2016; 14: 3981
    • 55c Li Y, Yang S, Wen G, Lin Q, Zhang G, Qiu L, Zhang X, Du G, Fang X. J. Org. Chem. 2016; 81: 2763
    • 55d Rubush DM, Rovis T. Synlett 2014; 713
    • 55e Wu W, Li X, Huang H, Yuan X, Lu J, Zhu K, Ye J. Angew. Chem. Int. Ed. 2013; 52: 1743
    • 55f Takizawa S, Nguyen TM.-N, Grossmann A, Suzuki M, Enders D, Sasai H. Tetrahedron 2013; 69: 1202

      Selected recent examples:
    • 56a Zhang R, Guo W, Duan M, Houk KN, Sun J. Angew. Chem. Int. Ed. 2019; 58: 18055
    • 56b Naganawa Y, Kawagishi M, Ito J.-i, Nishiyama H. Angew. Chem. Int. Ed. 2016; 55: 6873
    • 56c Takagi R, Nishi T. Org. Biomol. Chem. 2015; 13: 11039
    • 56d Wang Z, Sheong FK, Sung HH. Y, Williams ID, Lin Z, Sun J. J. Am. Chem. Soc. 2015; 137: 5895
    • 56e Miyamae N, Watanabe N, Moritaka M, Nakano K, Ichikawa Y, Kotsuki H. Org. Biomol. Chem. 2014; 12: 5847
  • 57 Chauhan P, Mahajan S, Kaya U, Valkonen A, Rissanen K, Enders D. Adv. Synth. Catal. 2016; 358: 3173

    • Selected examples:
    • 58a Chouchène N, Toumi A, Boudriga S, Edziri H, Sobeh M, Abdelfattah MA. O, Askri M, Knorr M, Strohmann C, Brieger L, Soldera A. Molecules 2022; 27: 582
    • 58b Vargas E, Echeverri F, Vélez ID, Robledo SM, Quiñones W. Molecules 2017; 22: 2041
    • 58c Bolognesi ML, Bartolini M, Cavalli A, Andrisano V, Rosini M, Minarini A, Melchiorre C. J. Med. Chem. 2004; 47: 5945
    • 58d van Vliet LA, Rodenhuis N, Dijkstra D, Wikström H, Pugsley TA, Serpa KA, Meltzer LT, Heffner TG, Wise LD, Lajiness ME, Huff RM, Svensson K, Sundell S, Lundmark M. J. Med. Chem. 2000; 43: 2871
    • 59a Eftekhari-Sis B, Zirak M. Chem. Rev. 2015; 115: 151
    • 59b Desimoni G, Faita G, Quadrelli P. Chem. Rev. 2013; 113: 5924

      Selected recent examples:
    • 60a Guan X.-K, Liu G.-F, An D, Zhang H, Zhang S.-Q. Org. Lett. 2019; 21: 5438
    • 60b Xu J, Hu L, Hu H, Ge S, Liu X, Feng X. Org. Lett. 2019; 21: 1632
    • 60c Huang K.-X, Xie M.-S, Zhang Q.-Y, Niu H.-Y, Qu G.-R, Guo H.-M. Org. Lett. 2018; 20: 5398
    • 60d Xie L, Yu X, Li J, Zhang Z, Qin Z, Fu B. Eur. J. Org. Chem. 2017; 657
    • 60e Zhong X, Lv J, Luo S. Org. Lett. 2017; 19: 3331
    • 60f Zhang M.-L, Wu Z.-J, Zhao J.-Q, Luo Y, Xu X.-Y, Zhang X.-M, Yuan W.-C. Org. Lett. 2016; 18: 5110
    • 60g Huang H, Konda S, Zhao JC.-G. Angew. Chem. Int. Ed. 2016; 55: 2213
  • 61 Mo Y, Zhang X, Yao Y, Duan C, Ye L, Shi Z, Zhao Z, Li X. J. Org. Chem. 2021; 86: 4448
  • 62 Yang Y, Du D. Chin. J. Chem. 2014; 32: 853

    • Selected examples:
    • 63a Dong X.-Q, Fang X, Tao H.-Y, Zhou X, Wang C.-J. Adv. Synth. Catal. 2012; 354: 1141
    • 63b Rana NK, Singh VK. Org. Lett. 2011; 13: 6520
    • 63c Ricci P, Carlone A, Bartoli G, Bosco M, Sambri L, Melchiorre P. Adv. Synth. Catal. 2008; 350: 49
    • 63d Suresh P, Pitchumani K. Tetrahedron: Asymmetry 2008; 19: 2037
    • 63e Zu L, Wang J, Li H, Xie H, Jiang W, Wang W. J. Am. Chem. Soc. 2007; 129: 1036
  • 64 Zhao B.-L, Du D.-M. Org. Biomol. Chem. 2014; 12: 1585

    • Selected examples:
    • 65a Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2010; 111: 455
    • 65b Smits R, Cadicamo CD, Burger K, Koksch B. Chem. Soc. Rev. 2008; 37: 1727
    • 66a Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 66b O’Hagan D. J. Fluorine Chem. 2010; 131: 1071
  • 67 Hu W.-F, Zhao J.-Q, Chen X.-Z, Zhou M.-Q, Zhang X.-M, Xu X.-Y, Yuan W.-C. Tetrahedron 2019; 75: 2206

    • Selected examples:
    • 69a Lesuisse D, Deprez P, Albert E, Duc TT, Sortais B, Gofflo D, Jean-Baptiste V, Marquette J.-P, Schoot B, Sarubbi E, Lange G, Broto P, Mandine E. Bioorg. Med. Chem. Lett. 2001; 11: 2127
    • 69b Arakawa M, Sasaki M, Ohmori M, Harada K, Fujimura A. Eur. J. Clin. Pharmacol. 2001; 56: 775
    • 69c Amblard M, Daffix I, Bedos P, Bergé G, Pruneau D, Paquet J.-L, Luccarini J.-M, Bélichard P, Dodey P, Martinez J. J. Med. Chem. 1999; 42: 4185
    • 69d Corelli F, Manetti F, Tafi A, Campiani G, Nacci V, Botta M. J. Med. Chem. 1997; 40: 125
    • 70a Kaur R, Singh K, Singh R. Chem. Biol. Lett. 2016; 3: 18
    • 70b Yanagisawa H, Ishihara S, Ando A, Kanazaki T, Miyamoto S, Koike H, Iijima Y, Oizumi K, Matsushita Y, Hata T. J. Med. Chem. 1987; 30: 1984
  • 71 Gharui C, Prakash S, Chopra D, Pan SC. Org. Biomol. Chem. 2020; 18: 2828
  • 72 Burtoloso AC. B, Dias RM. P, Bernardim B. Acc. Chem. Res. 2015; 48: 921
  • 73 Santiago JV, Burtoloso AC. B. Eur. J. Org. Chem. 2018; 2822
  • 74 Momo PB, Mizobüchi EF, Echemendía R, Baddeley I, Grayson MN, Burtoloso AC. B. J. Org. Chem. 2022; 87: 3482

    • Selected examples:
    • 75a Ielo L, Pace V, Holzer W, Rahman MM, Meng G, Szostak R, Szostak M. Chem. Eur. J. 2020; 26: 16246
    • 75b Kaiser D, Bauer A, Lemmerer M, Maulide N. Chem. Soc. Rev. 2018; 47: 7899
    • 75c Allgäuer DS, Jangra H, Asahara H, Li Z, Chen Q, Zipse H, Ofial AR, Mayr H. J. Am. Chem. Soc. 2017; 139: 13318
    • 75d Dey A, Sasmal S, Seth K, Lahiri GK, Maiti D. ACS Catal. 2017; 7: 433
    • 75e Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
    • 75f Baker EL, Yamano MM, Zhou Y, Anthony SM, Garg NK. Nat. Commun. 2016; 7: 11554
    • 75g Ruider SA, Maulide N. Angew. Chem. Int. Ed. 2015; 54: 13856
    • 75h Hie L, Nathel NF. F, Shah TK, Baker EL, Hong X, Yang Y.-F, Liu P, Houk KN, Garg NK. Nature 2015; 524: 79
    • 76a Bennet AJ, Wang QP, Slebocka-Tilk H, Somayaji V, Brown RS. J. Am. Chem. Soc. 1990; 112: 6383
    • 76b Slebocka-Tilk H, Brown RS. J. Org. Chem. 1987; 52: 805
    • 76c Pauling L, Corey RB, Branson HR. Proc. Natl. Acad. Sci. U.S.A. 1951; 37: 205
  • 77 Formica M, Rozsar D, Su G, Farley AJ. M, Dixon DJ. Acc. Chem. Res. 2020; 53: 2235

    • Selected examples:
    • 78a Su G, Thomson CJ, Yamazaki K, Rozsar D, Christensen KE, Hamlin TA, Dixon DJ. Chem. Sci. 2021; 12: 6064
    • 78b Golec JC, Carter EM, Ward JW, Whittingham WG, Simón L, Paton RS, Dixon DJ. Angew. Chem. Int. Ed. 2020; 59: 17417
    • 78c Thomson CJ, Barber DM, Dixon DJ. Angew. Chem. Int. Ed. 2020; 59: 5359
    • 78d Formica M, Sorin G, Farley AJ. M, Díaz J, Paton RS, Dixon DJ. Chem. Sci. 2018; 9: 6969
    • 78e Fulton JL, Horwitz MA, Bruske EL, Johnson JS. J. Org. Chem. 2018; 83: 3385
    • 78f Farley AJ. M, Sandford C, Dixon DJ. J. Am. Chem. Soc. 2015; 137: 15992
  • 79 Rozsar D, Formica M, Yamazaki K, Hamlin TA, Dixon DJ. J. Am. Chem. Soc. 2022; 144: 1006
    • 80a Chen M, Li Z, Shao X, Maienfisch P. J. Agric. Food Chem. 2022; 70: 11123
    • 80b Gray KC, Heider P, McGough P, Ondari M, Devaraj J, Yang Q, Frycek G, Graham B, Neuman J, Lorsbach BA, Zhang Y. Org. Process Res. Dev. 2019; 23: 2142
    • 80c Yang Q, Li X, Lorsbach BA, Muhuhi JM, Roth JA, Gray K, Podhorez DE. Org. Process Res. Dev. 2019; 23: 2133
    • 80d Yang Q, Li X, Lorsbach BA, Roth GA, Podhorez DE, Ross RJr, Niyaz N, Buysse A, Knueppel D, Nissen J. Org. Process Res. Dev. 2019; 23: 2122
  • 81 Hamza A, Schubert G, Soós T, Pápai I. J. Am. Chem. Soc. 2006; 128: 13151
    • 82a Siwach A, Verma PK. BMC Chem. 2021; 15: 12
    • 82b Gopalakrishnan AK, Angamaly SA, Velayudhan MP. ChemistrySelect 2021; 6: 10918
    • 82c Chopra PN, Sahu JK. Curr. Drug Discovery Technol. 2020; 17: 574
    • 82d Weinreb SM. Nat. Prod. Rep. 2007; 24: 931

      Selected examples:
    • 83a İbişoğlu H, Atilla D, Tümay SO, Şenocak A, Duygulu E, Yuksel F. J. Mol. Struct. 2020; 1208: 127888
    • 83b Chen S.-C. CrystEngComm 2016; 18: 6543
    • 83c Khan MN, Pal S, Karamthulla S, Choudhury LH. RSC Adv. 2014; 4: 3732
    • 83d Zhang Z, Xie F, Jia J, Zhang W. J. Am. Chem. Soc. 2010; 132: 15939
    • 83e Miller SJ. Acc. Chem. Res. 2004; 37: 601
    • 83f Crudden CM, Allen DP. Coord. Chem. Rev. 2004; 248: 2247
    • 83g Dupont J, de Souza RF, Suarez PA. Z. Chem. Rev. 2002; 102: 3667
    • 84a Yang J, Farley AJ. M, Dixon DJ. Chem. Sci. 2017; 8: 606
    • 84b White JD, Shaw S. Chem. Sci. 2014; 5: 2200
    • 84c Fang X, Li J, Wang C.-J. Org. Lett. 2013; 15: 3448
    • 84d Uraguchi D, Kinoshita N, Nakashima D, Ooi T. Chem. Sci. 2012; 3: 3161
  • 85 Jha RK, Rout S, Joshi H, Das A, Singh VK. Tetrahedron 2019; 76: 130800

    • Selected examples:
    • 86a Lopes AA, Chioca B, Musquiari B, Crevelin EJ, França S. dC, da Silva MF. d. G. F, Pereira AM. S. Sci. Rep. 2019; 9: 11349
    • 86b Trost BM, Bringley DA, Zhang T, Cramer N. J. Am. Chem. Soc. 2013; 135: 16720
    • 86c Wanner MJ, Ingemann S, van Maarseveen JH, Hiemstra H. Eur. J. Org. Chem. 2013; 1100
    • 86d Day J, Uroos M, Castledine RA, Lewis W, McKeever-Abbas B, Dowden J. Org. Biomol. Chem. 2013; 11: 6502
    • 86e Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 86f Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
  • 87 Duan S.-W, Li Y, Liu Y.-Y, Zou Y.-Q, Shi D.-Q, Xiao W.-J. Chem. Commun. 2012; 48: 5160

    • Selected examples:
    • 88a Seifert T, Malo M, Kokkola T, Engen K, Fridén-Saxin M, Walén EA. A, Lahtela-Kakkonen M, Jarho E.-M, Luthman K. J. Med. Chem. 2014; 57: 9870
    • 88b Conti C, Monaco LP, Desideri N. Bioorg. Med. Chem. 2011; 19: 7357
    • 88c Shi Y.-L, Shi M. Org. Biomol. Chem. 2007; 5: 1499
    • 88d Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O. Bioorg. Med. Chem. 2006; 14: 6686
    • 88e Kang JG, Shin SY, Kim MJ, Bajpai V, Maheshwari DK, Kang SC. J. Antibiot. 2004; 57: 726
  • 89 Yang W, Yang Y, Du D.-M. Org. Lett. 2013; 15: 1190
    • 90a Bi X, Pasunooti KK, Tareq AH, Takyi-Williams J, Liu C.-F. Org. Biomol. Chem. 2016; 14: 5282
    • 90b Cheng Y, Peng H, Chen W, Ni N, Ke B, Dai C, Wang B. Chem. Eur. J. 2013; 19: 4036
    • 90c Nguyen DP, Elliott T, Holt M, Muir TW, Chin JW. J. Am. Chem. Soc. 2011; 133: 11418
  • 91 Yang W, Du D.-M. Org. Biomol. Chem. 2012; 10: 6876