Synthesis 2022; 54(11): 2527-2538
DOI: 10.1055/a-1754-2271
short review

Accelerated Asymmetric Reaction Screening with Optical Assays

Diandra Safira Hassan
,
F. Safia Kariapper
,
Ciarán C. Lynch
,
Christian Wolf
We gratefully acknowledge financial support from the U.S. National Science Foundation (CHE-1764135).


In memory of Rachel Aterrado who is sorely missed in our department.

Abstract

Asymmetric reaction development often involves optimization of several mutually dependent parameters that affect the product yield and enantiomeric excess. Widely available high-throughput experimentation equipment and optical sensing assays can drastically streamline comprehensive optimization efforts and speed up the discovery process at reduced cost, workload, and waste production. A variety of chiroptical assays that utilize fluorescence, UV, and circular dichroism measurements to determine reaction yields and ee values are now available, enabling the screening of numerous small-scale reaction samples in parallel with multi-well plate technology. Many of these optical methods considerably shorten work-up protocols typically required for traditional asymmetric reaction analysis and some can be directly applied to crude mixtures thus eliminating cumbersome separation and purification steps altogether.

1 Introduction

2 Fluorescence Assays

3 UV Sensing Methods

4 Sensing with Circular Dichroism Probes

5 Hybrid Approaches

6 Optical Analysis with Intrinsically CD-Active Reaction Products

7 Conclusion



Publication History

Received: 10 January 2022

Accepted after revision: 28 January 2022

Accepted Manuscript online:
28 January 2022

Article published online:
25 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Teixeira J, Tiritan ME, Pinto MM. M, Fernandes C. Molecules 2019; 24: 865
  • 2 Yang L, Wenzel T, Williamson RT, Christensen M, Schafer W, Welch CJ. ACS Cent. Sci. 2016; 2: 332
  • 3 Wolf C. Dynamic Stereochemistry of Chiral Compounds - Principles and Applications. RSC; Cambridge: 2008: 136-179
    • 4a Guo J, Wu J, Siuzdak G, Finn MG. Angew. Chem. Int. Ed. 1999; 38: 1755
    • 4b Reetz MT, Becker MH, Klein H.-W, Stockigt D. Angew. Chem. Int. Ed. 1999; 38: 1758
    • 4c Markert C, Pfaltz A. Angew. Chem. Int. Ed. 2004; 43: 2498
    • 4d Mueller CA, Markert C, Teichert AM, Pfaltz A. Chem. Commun. 2009; 1607
    • 4e Ebner C, Muller CA, Markert C, Pfaltz A. J. Am. Chem. Soc. 2011; 133: 4710
    • 4f Piovesana S, Samperi R, Laganà A, Bella M. Chem. Eur. J. 2013; 19: 11478
    • 5a Reetz MT, Becker MH, Kuhling KM, Holzwarth A. Angew. Chem. Int. Ed. 1998; 37: 2647
    • 5b Tielmann P, Boese M, Luft M, Reetz MT. Chem. Eur. J. 2003; 9: 3882
  • 6 Reetz MT, Kühling KM, Deege A, Hinrichs H, Belder D. Angew. Chem. Int. Ed. 2000; 39: 3891
    • 7a Abato P, Seto CT. J. Am. Chem. Soc. 2001; 123: 9206
    • 7b Taran F, Gauchet C, Mohar B, Meunier S, Valleix A, Renard PY, Creminon C, Grassi J, Wagner A, Mioskowski C. Angew. Chem. Int. Ed. 2002; 41: 124
    • 7c Reetz MT. Angew. Chem. Int. Ed. 2002; 41: 1335
    • 7d Dey S, Powell DR, Hu C, Berkowitz DB. Angew. Chem. Int. Ed. 2007; 46: 7010
    • 7e Friest JA, Broussy S, Chung WJ, Berkowitz DB. Angew. Chem. Int. Ed. 2011; 50: 8895
    • 8a Leung D, Kang SO, Anslyn EV. Chem. Soc. Rev. 2012; 41: 448
    • 8b Wolf C, Bentley KW. Chem. Soc. Rev. 2013; 42: 5408
    • 8c Herrera BT, Pilicer SL, Anslyn EV, Joyce LA, Wolf C. J. Am. Chem. Soc. 2018; 140: 10385

    • For fluorescence detected circular dichroism, see:
    • 8d Prabodh A, Wang Y, Sinn S, Albertini P, Spies C, Spuling E, Yang L.-P, Jiang W, Brase S, Biedermann F. Chem. Sci. 2021; 12: 9420
  • 9 Tumambac G, Wolf C. Org. Lett. 2005; 7: 4045
  • 10 Li Z.-B, Lin J, Qin Y.-C, Pu L. Org. Lett. 2005; 7: 3441
  • 11 Feagin TA, Olsen DP. V, Headman ZC, Heemstra JM. J. Am. Chem. Soc. 2015; 137: 4198
  • 12 Shcherbakova EG, Brega V, Lynch VM, James TD, Anzenbacher P. Chem. Eur. J. 2017; 23: 10222
  • 13 Shcherbakova EG, James TD, Anzenbacher P. Nat. Protoc. 2020; 15: 2203
  • 14 Zhu Y.-Y, Wu X.-D, Abed M, Gu S.-X, Pu L. Chem. Eur. J. 2019; 25: 7866
  • 15 Wu X, Marks J, Wang C, Dickie D, Pu L. J. Org. Chem. 2021; 86: 4607
  • 16 Dey S, Karukurichi KR, Shen W, Berkowitz DB. J. Am. Chem. Soc. 2005; 127: 8610
  • 17 Shabbir SH, Regan CJ, Anslyn EV. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 10487
  • 18 Arai T, Watanabe M, Fujiwara A, Yokoyama N, Yanagisawa A. Angew. Chem. Int. Ed. 2006; 45: 5978
  • 19 Arai T, Yokoyama N, Yanagisawa A. Chem. Eur. J. 2008; 14: 2052
  • 20 Nieto S, Dragna JM, Anslyn EV. Chem. Eur. J. 2010; 16: 227
  • 21 Zhao Q, Wen J, Tan R, Huang K, Metola P, Wang R, Anslyn EV, Zhang X. Angew. Chem. Int. Ed. 2014; 53: 8467
  • 22 Biedermann F, Nau WM. Angew. Chem. Int. Ed. 2014; 53: 5694
  • 23 Giuliano MW, Lin C.-Y, Romney DK, Miller SJ, Anslyn EV. Adv. Synth. Catal. 2015; 357: 2301
  • 24 Bentley KW, Zhang P, Wolf C. Sci. Adv. 2016; 2: e1501162
  • 25 Bentley KW, Proano D, Wolf C. Nat. Commun. 2016; 7: 12539
  • 26 De los Santos ZA, Wolf C. J. Am. Chem. Soc. 2016; 138: 13517
  • 27 Thanzeel FY, Balaraman K, Wolf C. Nat. Commun. 2018; 9: 5323
  • 28 Pilicer SL, Dragna JM, Garland A, Welch CJ, Anslyn AV, Wolf C. J. Org. Chem. 2020; 85: 10858
  • 29 Wang LL, Quan M, Yang TL, Chen Z, Jiang W. Angew. Chem. Int. Ed. 2020; 59: 23817
  • 30 Joyce L, Sherer E, Welch C. Chem. Sci. 2014; 5: 2855
  • 31 Jo HH, Gao X, You L, Anslyn EV, Krische MJ. Chem. Sci. 2015; 6: 6747
  • 32 Thanzeel FY, Balaraman K, Wolf C. Chem. Eur. J. 2019; 25: 11020
  • 33 Rosales AR, Wahlers J, Lime E, Meadows RE, Leslie KW, Savin R, Bell F, Hansen E, Hekquist P, Munday RH, Wiest O, Norrby P.-O. Nat. Catal. 2019; 2: 41