Synthesis 2022; 54(22): 5064-5076
DOI: 10.1055/a-1748-7448
special topic
Aryne Chemistry in Synthesis

Recent Advances in Construction of C(sp2)–O Bonds via Aryne Participated Multicomponent Coupling Reactions

Ruirui Zhang
,
Xia Peng
,
Jiajing Tan
J.J.T. is grateful for the support by the National Natural Science Foundation of China (21702013) and the Fundamental Research Funds for the Central Universities (XK1802-6) in BUCT.


Abstract

Aryne chemistry is a powerful synthetic technique that forms new bonds to aromatic rings. The recent resurgence of aryne-based multicomponent coupling strategies has led to an influx of methodologies for the mild synthesis of arene derivatives. In particular, these innovative discoveries broaden and streamline approaches toward phenol ether motifs, which are a prevalent structural component across a broad range of chemistry related research fields. Herein, this review aims to provide a comprehensive overview of the recent progress in the construction of C(sp2)–O bonds via aryne-induced multicomponent reactions. Special attention has been paid to reaction design and mechanistic pathways.

1 Introduction

2 Insertion-Based MCRs

3 Nucleophilic-Addition-Based MCRs

4 Cycloaddition-Based MCRs

5 Summary



Publication History

Received: 16 December 2021

Accepted after revision: 24 January 2022

Accepted Manuscript online:
24 January 2022

Article published online:
05 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Pitsinos EN, Vidali VP, Couladouros EA. Eur. J. Org. Chem. 2011; 2011: 1207
    • 1b Fuwa H. Total Synthesis of Marine Polycyclic Ether Natural Products. In Toxins and Biologically Active Compounds from Microalgae. Rossini GP. CRC Press; Boca Raton: 2014: 348
    • 1c Nicolaou KC, Boddy CN. C, Bräse S, Winssinger N. Angew. Chem. Int. Ed. 1999; 38: 2096
    • 1d Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 1e Nicolaou KC, Frederick MO, Aversa RJ. Angew. Chem. Int. Ed. 2008; 47: 7182
    • 1f Inoue M. Chem. Rev. 2005; 105: 4379
    • 1g Nicolaou KC, Hwang CK, Nugiel DA. J. Am. Chem. Soc. 1989; 111: 4136
    • 1h Nicolaou KC, Hwang CK, Duggan ME, Nugiel DA, Abe Y, Reddy KB, DeFrees SA, Reddy DR, Awartani RA, Conley SR, Rutjes FP. J. T, Theodorakis EA. J. Am. Chem. Soc. 1995; 117: 10227
    • 1i Trost BM, Zhang T. Chem. Eur. J. 2011; 17: 3630
    • 1j Brocas A.-L, Mantzaridis C, Tunc D, Carlotti S. Prog. Polym. Sci. 2013; 38: 845
    • 2a Qiu Z.-H, Li C.-J. Chem. Rev. 2020; 120: 10454
    • 2b Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
    • 2c Mesganaw T, Garg NK. Org. Process Res. Dev. 2013; 17: 29
    • 3a Mandal S, Mandal S, Ghosh SK, Sar P, Ghosh A, Saha R, Saha B. RSC Adv. 2016; 6: 69605
    • 3b Xiang J.-B, Shang M, Kawamata Y, Lundberg H, Reisberg S, Chen M, Mykhailiuk P, Beutner G, Collins M, Davies A, Del Bel M, Gallego G, Spangler J, Starr JT, Yang S, Blackmond D, Baran PS. Nature 2019; 573: 398
    • 3c Shibutani S, Kodo T, Takeda M, Nagao K, Tokunaga N, Sasaki Y, Ohmiya H. J. Am. Chem. Soc. 2020; 142: 1211
    • 4a Henderson AS, Medina S, Bower JF, Galan MC. Org. Lett. 2015; 17: 4846
    • 4b Swamy KC. K, Kumar NN. B, Balaraman E, Kumar KV. P. P. Chem. Rev. 2009; 109: 2551
    • 4c Manivel P, Rai NP, Jayashankara VP, Arunachalam PN. Tetrahedron Lett. 2007; 48: 2701
    • 4d Fuhrmann E, Talbiersky J. Org. Process Res. Dev. 2005; 9: 206
    • 4e Wang Z.-R. Comprehensive Organic Name Reactions and Reagents. Wiley; Hoboken: 2009: 1350
    • 4f Kürti L, Czakó B. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier; Dorecht: 2005
    • 5a Widenhoefer RA, Buchwald SL. J. Am. Chem. Soc. 1998; 120: 6504
    • 5b Hartwig JF. Inorg. Chem. 2007; 46: 1936
    • 6a Sach NW, Richter DT, Cripps S, Tran-Dubé M, Zhu H.-C, Huang B.-W, Cui J, Sutton SC. Org. Lett. 2012; 14: 3886
    • 6b Lindstedt E, Ghosh R, Olofsson B. Org. Lett. 2013; 15: 6070
    • 6c Lindstedt E, Stridfeldt E, Olofsson B. Org. Lett. 2016; 18: 4234
    • 6d Sundalam SK, Stuart DR. J. Org. Chem. 2015; 80: 6456
    • 6e Shen X, Neumann CN, Kleinlein C, Goldberg NW, Ritter T. Angew. Chem. Int. Ed. 2015; 54: 5662
  • 7 Stoermer R, Kahlert B. Ber. Dtsch. Chem. Ges. 1902; 35: 1633
  • 8 Himeshima Y, Sonoda T, Kobayashi H. Chem. Lett. 1983; 12: 1211

    • For selected reports, please see:
    • 9a Modern Aryne Chemistry. Biju AT. Wiley-VCH; Weinheim: 2021
    • 9b Fluegel LL, Hoye TR. Chem. Rev. 2021; 121: 2413
    • 9c Shi J.-R, Li L.-H, Li Y. Chem. Rev. 2021; 121: 3892
    • 9d Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
    • 9e He J, Qiu D.-C, Li Y. Acc. Chem. Res. 2020; 53: 508
    • 9f Chen J, Fan R, Liu Z.-J, Tan J.-J. Adv. Synth. Catal. 2021; 363: 657
    • 9g Takikawa H, Nishii A, Sakai T, Suzuki K. Chem. Soc. Rev. 2018; 47: 8030
    • 9h Feng M.-H, Jiang X.-F. Synthesis 2017; 49: 4414
    • 9i García-López J.-A, Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
    • 9j Bhojgude SS, Bhunia A, Biju AT. Acc. Chem. Res. 2016; 49: 1658
    • 9k Neog K, Gogoi P. Org. Biomol. Chem. 2020; 18: 9549
    • 9l Anthony SM, Wonilowicz LG, McVeigh MS, Garg NK. JACS Au 2021; 1: 897
    • 9m Yoshida S, Hosoya T. Chem. Lett. 2015; 44: 1450
    • 9n Matsuzawa T, Yoshida S, Hosoya T. Tetrahedron Lett. 2018; 59: 4197
    • 9o Shi J.-R, Li Y.-Y, Li Y. Chem. Soc. Rev. 2017; 46: 1707
    • 9p Roy T, Biju AT. Chem. Commun. 2018; 54: 2580
    • 9q Miyabe H. Molecules 2015; 20: 12558
    • 9r Yan Q, Fan R, Liu B.-B, Su S.-S, Wang B, Yao T.-L, Tan J.-J. Chin. J. Org. Chem. 2021; 41: 455
    • 9s Hazarika H, Gogoi P. Org. Biomol. Chem. 2021; 19: 8466
    • 10a Yoshida H. In Multicomponent Reactions in Organic Synthesis. Zhu J, Wang Q, Wang M. Wiley-VCH; Weinheim: 2015: 39
    • 10b Lee D, Ghorai S. Synlett 2020; 31: 750
    • 10c Multicomponent Reactions: Concepts and Applications for Design and Synthesis. Herrera RP, Marqués-López E. Wiley; Hoboken: 2015
    • 10d Multicomponent Reactions. Zhu J, Bienayme H. Wiley-VCH; Weinheim: 2005
    • 10e Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
    • 10f Hulme C, Gore V. Curr. Med. Chem. 2003; 10: 51
    • 10g Levi L, Müller TJ. Chem. Soc. Rev. 2016; 45: 2825
    • 10h Multicomponent Reactions: Synthesis of Bioactive Heterocycles. Ameta KL, Dandia A. CRC Press; Boca Raton: 2017
    • 10i Sandra B.-R, Diego P, Enrique G. Synlett 2007; 1308
    • 11a Shen Y, Xiang M.-J, Wu S, Zhang Z.-B, Li S.-J, Xie C.-S. Cell Rep. Phys. Sci. 2021; 2: 100615
    • 11b Bhattacharjee S, Deswal S, Manoj N, Jindal G, Biju AT. Org. Lett. 2021; 23: 9083
    • 11c Haas TM, Wiesler S, Dürr-Mayer T, Ripp A, Fouka P, Qiu D, Jessen HJ. Angew. Chem. Int. Ed. 2021; 61: e202113231
    • 11d An Y, Zhang F, Du G.-F, Cai Z.-H, He L. Org. Chem. Front. 2021; 8: 6979
    • 11e Ramirez M, Darzi ER, Donaldson JS, Houk KN, Garg NK. Angew. Chem. Int. Ed. 2021; 60: 18201
    • 11f Sanjeev K, Raju S, Chandrasekhar S. Org. Lett. 2021; 23: 4013
    • 11g Lanzi M, Dherbassy Q, Wencel-Delord J. Angew. Chem. Int. Ed. 2021; 60: 14852
    • 11h Gaykar RN, George M, Guin A, Bhattacharjee S, Biju AT. Org. Lett. 2021; 23: 3447
    • 11i Yao T.-L, Hui J.-Z, Liu T, Li T. J. Org. Chem. 2021; 86: 5477
    • 11j Matsuzawa T, Hosoya T, Yoshida S. Org. Lett. 2021; 23: 2347
    • 11k Tawatari T, Takasu K, Takikawa H. Chem. Commun. 2021; 57: 11863
    • 11l Bürger M, Ehrhardt N, Barber T, Ball LT, Namyslo JC, Jones PG, Werz DB. J. Am. Chem. Soc. 2021; 143: 16796
    • 11m Zhang W.-J, Bu J.-H, Wang L, Li P.-H, Li H.-J. Org. Chem. Front. 2021; 8: 5045
    • 11n Saputra A, Fan R, Yao T.-L, Chen J, Tan J.-J. Adv. Synth. Catal. 2020; 362: 2683
    • 11o Matsuzawa T, Hosoya T, Yoshida S. Chem. Sci. 2020; 11: 9691
    • 11p Zheng T.-Y, Tan J.-J, Fan R, Su S.-S, Liu B.-B, Tan C, Xu K. Chem. Commun. 2018; 54: 1303
    • 11q Fan R, Liu B.-B, Zheng T.-Y, Xu K, Tan C, Zeng T.-L, Su S.-S, Tan J.-J. Chem. Commun. 2018; 54: 7081
    • 11r Liu J.-P, Li J.-Q, Ren B.-W, Zhang Y, Xue L.-Y, Wang Y.-Y, Zhao J.-J, Zhang P.-Y, Xu X.-J, Li P. Adv. Synth. Catal. 2021; 363: 4734
    • 11s Tan J.-J, Liu B.-B, Su S.-S. Org. Chem. Front. 2018; 5: 3093
    • 11t Uchida K, Yoshida S, Hosoya T. Org. Lett. 2017; 19: 1184 ; and references therein
    • 11u Liu J.-P, Tang S, Zhao M.-Y, Huai J.-N, Yu J.-Y, Zhao J.-J, Li P. ACS Omega 2021; 6: 35852
  • 12 Yoshida H, Watanabe M, Fukushima H, Ohshita J, Kunai A. Org. Lett. 2004; 6: 4049
  • 13 Wallbaum J, Jones PG, Werz DB. J. Org. Chem. 2015; 80: 3730
  • 14 Yoshioka E, Kohtani S, Miyabe H. Org. Lett. 2010; 12: 1956
  • 15 Yoshioka E, Kohtani S, Miyabe H. Angew. Chem. Int. Ed. 2011; 50: 6638
  • 16 Yoshioka E, Nishimura M, Nakazawa T, Kohtani S, Miyabe H. J. Org. Chem. 2015; 80: 8464
  • 17 Yoshida H, Ito Y, Ohshita J. Chem. Commun. 2011; 47: 8512
  • 18 Yoshioka E, Tanaka H, Kohtani S, Miyabe H. Org. Lett. 2013; 15: 3938
  • 19 Yoshioka E, Kohtani S, Miyabe H. Molecules 2014; 19: 863
  • 20 Yoshioka E, Tamenaga H, Miyabe H. Tetrahedron Lett. 2014; 55: 1402
  • 21 Zhou C, Wang J, Jin J.-S, Lu P, Wang Y.-G. Eur. J. Org. Chem. 2014; 2014: 1832
  • 22 Liu F.-L, Yang H.-M, Hu X.-Q, Jiang G.-X. Org. Lett. 2014; 16: 6408
  • 23 Wen L.-R, Man N.-N, Yuan W.-K, Li M. J. Org. Chem. 2016; 81: 5942
  • 24 Gouthami P, Chavan LN, Chegondi R, Chandrasekhar S. J. Org. Chem. 2018; 83: 3325
  • 25 Sharma A, Gogoi P. ChemistrySelect 2017; 2: 11801
  • 26 Neog K, Das B, Gogoi P. Org. Biomol. Chem. 2018; 16: 3138
  • 27 Sharma A, Gogoi P. Org. Biomol. Chem. 2019; 17: 333
  • 28 Huang W.-B, Qiu L.-Q, Ren F.-Y, He L.-N. Chem. Commun. 2021; 57: 9578
  • 29 Hu Y.-M, Hu Y.-D, Hu Q, Ma J, Lv S, Liu B.-H, Wang S.-S. Chem. Eur. J. 2017; 23: 4065
    • 30a Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
    • 30b Fan R, Tan C, Liu Y.-G, Wei Y, Zhao X.-W, Liu X.-Y, Tan J.-J, Yoshida H. Chin. Chem. Lett. 2021; 32: 299
    • 30c Otsuka S, Nogi K, Yorimitsu H. Top. Curr. Chem. 2018; 376: 13
    • 30d Yorimitsu H. Chem. Rec. 2021; 21: 3356
  • 31 Liu F.-L, Chen J.-R, Zou Y.-Q, Wei Q, Xiao W.-J. Org. Lett. 2014; 16: 3768
  • 32 Li H.-Y, Xing L.-J, Lou M.-M, Wang H, Liu R.-H, Wang B. Org. Lett. 2015; 17: 1098
  • 33 Li X.-J, Sun Y, Huang X, Zhang L, Kong L.-C, Peng B. Org. Lett. 2017; 19: 838
  • 34 Hazarika H, Neog K, Sharma A, Das B, Gogoi P. J. Org. Chem. 2019; 84: 5846
  • 35 Hazarika H, Gogoi P. Org. Biomol. Chem. 2020; 18: 2727
  • 36 Li Y.-Y, Qiu D.-C, Gu R.-R, Wang J.-L, Shi J.-R, Li Y. J. Am. Chem. Soc. 2016; 138: 10814
  • 37 Shi J.-R, Li L.-G, Shan C.-H, Chen Z.-H, Dai L, Tan M, Lan Y, Li Y. J. Am. Chem. Soc. 2021; 143: 10530
  • 38 Yao L.-L, Hu Q, Lei Y, Bao L, Hu Y.-M. Org. Chem. Front. 2020; 7: 3633
  • 39 Ritts CB, Hoye TR. J. Am. Chem. Soc. 2021; 143: 13501
  • 40 Chen D.-L, Sun Y, Chen M.-Y, Li X.-J, Zhang L, Huang X.-H, Bai Y.-H, Luo F, Peng B. Org. Lett. 2019; 21: 3986
  • 41 Neog K, Dutta D, Das B, Gogoi P. Org. Biomol. Chem. 2019; 17: 6450
  • 42 Okuma K, Fukuzaki Y, Nojima A, Shioji K, Yokomori Y. Tetrahedron Lett. 2008; 49: 3063
  • 43 Okuma K, Hino H, Sou A, Nagahora N, Shioji K. Chem. Lett. 2009; 38: 1030
  • 44 Okuma K, Fukuzaki Y, Nojima A, Sou A, Hino H, Matsunaga N, Nagahora N, Shioji K, Yokomori Y. Bull. Chem. Soc. Jpn. 2010; 83: 1238
  • 45 Yoshida H, Asatsu Y, Mimura Y, Ito Y, Ohshita J, Takaki K. Angew. Chem. Int. Ed. 2011; 50: 9676
  • 46 Thangaraj M, Bhojgude SS, Mane MV, Biju AT. Chem. Commun. 2016; 52: 1665
  • 47 Xiong W.-F, Qi C.-R, Cheng R.-X, Zhang H, Wang L, Yan D.-H, Jiang H.-F. Chem. Commun. 2018; 54: 5835
  • 48 Cheng R.-X, Xiong W.-F, Qi C.-R, Wang L, Ren Y.-W, Jiang H.-F. Chem. Commun. 2020; 56: 6495
  • 49 Karmakar R, Ghorai S, Xia Y.-Z, Lee D. Molecules 2015; 20: 15862
    • 50a Leroux F, Jeschke P, Schlosser M. Chem. Rev. 2005; 105: 827
    • 50b Kirsch P, Bremer M. Angew. Chem. Int. Ed. 2000; 39: 4216
    • 50c Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
    • 50d Landelle G, Panossian A, Leroux FR. Curr. Top. Med. Chem. 2014; 14: 941
  • 51 Zhou M, Ni C.-F, Zeng Y.-W, Hu J.-B. J. Am. Chem. Soc. 2018; 140: 6801
  • 52 Lei M, Miao H, Wang X.-Y, Zhang W, Zhu C.-J, Lu X.-Q, Shen J, Qin Y, Zhang H.-Y, Sha S.-J, Zhu Y.-Q. Tetrahedron Lett. 2019; 60: 1389
  • 53 Raminelli C, Liu ZJ, Larock RC. J. Org. Chem. 2006; 71: 4689
  • 54 Shaibu BS, Kawade RK, Liu R.-S. Org. Biomol. Chem. 2012; 10: 6834
  • 55 Okuma K, Hirano K, Shioga C, Nagahora N, Shioji K. Bull. Chem. Soc. Jpn. 2013; 86: 615
  • 56 Li P, Wu C.-R, Zhao J.-J, Li Y, Xue W.-C, Shi F. Can. J. Chem. 2013; 91: 43
  • 57 Lu C, Dubrovskiy AV, Larock RC. J. Org. Chem. 2012; 77: 2279
  • 58 Dai M.-J, Wang Z, Danishefsky SJ. Tetrahedron Lett. 2008; 49: 6613
  • 59 Yao T.-L, Ren B.-G, Wang B, Zhao Y.-N. Org. Lett. 2017; 19: 3135
    • 60a Scherübl M, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2021; 60: 711
    • 60b Jia H, Guo Z.-Y, Liu H.-L, Mao B.-M, Shi X.-Y, Guo H.-C. Chem. Commun. 2018; 54: 7050
    • 60c Li L.-J, Li Y, Fu N.-K, Zhang L, Luo S.-Z. Angew. Chem. Int. Ed. 2020; 59: 14347
    • 60d Mhaske S, Dhokale R. Synthesis 2018; 50: 1