Synthesis 2021; 53(23): 4389-4408
DOI: 10.1055/a-1543-9719
short review

Advances in the Semi-Synthesis of Triterpenoids

Jin-Xi Liao
,
Zhen-Ni Hu
,
Hui Liu
,
Jian-Song Sun
This work was financially supported by the National Natural Science Foundation of China (21867012 and 21877055).


Abstract

Recent achievements in triterpenoid semi-synthesis are discussed in this short review, which is divided into three parts according to the type of synthetic strategy being employed. These strategies include functionalization, modification of the carbon skeleton, and glycosylation. In the section on functionalization strategies, both functional group interconversions and new functional group installations on triterpenoid starting materials are described. The section on modification of the carbon skeleton is divided into three parts according to the tactic being applied, and incorporates rearrangement of the carbon skeleton, ring scission, and introduction of an additional heterocyclic ring. Meanwhile, in the section on glycosylation, notable achievements in the semi-synthesis of both natural and artificial triterpene saponins are discussed. Overall, the pivotal transformations that have brought about striking chemical structure variations of triterpenoid starting materials are highlighted herein, and it is hoped that this short review will provide inspiration to both established and new investigators engaged in this field of research.

1 Introduction

2 Semi-Synthesis of Triterpenoids via Functionalization Strategies

2.1 Functionalization of Rings with Functional Groups

2.2 Functionalization of a Side Chain

2.3 Functionalization of Rings without Existing Functional Groups

2.4 Functionalization of Angular Methyl Groups

2.5 Functionalization of Angular Methyl Groups and Functional-Group-Free Rings

2.6 Multisite Modifications

3 Semi-Synthesis of Triterpenoids via C-Skeleton Modification Strategies

3.1 Rearrangement Tactics

3.2 Ring-Opening Tactics

3.3 Additional Ring Introduction Tactics

4 emi-Synthesis of Triterpenoids via a Glycosylation Strategy

5 Conclusions and Outlook



Publication History

Received: 12 April 2021

Accepted after revision: 05 July 2021

Accepted Manuscript online:
05 July 2021

Article published online:
11 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Kuo R.-Y, Qian K, Morris-Natschke SL, Lee K.-H. Nat. Prod. Rep. 2009; 26: 1321
    • 1b Dinda B, Debnath S, Mohanta BC, Harigaya Y. Chem. Biodivers. 2010; 7: 2327
    • 1c Hill RA, Connolly JD. Nat. Prod. Rep. 2013; 29: 1028

      For selected reviews, see:
    • 2a Salvador JA. R, Leal AS, Valdeira AS, Goncalves BM. F, Alho DP. S, Figueiredo SA. C, Silvester SM. Eur. J. Med. Chem. 2017; 142: 95
    • 2b Ren Y, Kinghorn AD. Planta Med. 2019; 85: 802
  • 3 Liby K, Sporn MB. Pharmcol. Rev. 2012; 64: 972
  • 4 Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J. Nat. Prod. Rep. 2006; 23: 394
  • 5 Willmann M, Wacheck V, Buckley J, Nagy K, Thalhammer J, Paschke R, Triche T, Jansen B, Selzer E. Eur. J. Clin. Invest. 2009; 39: 384
    • 6a Ragupathi G, Gardner JR, Livingston PO, Gin DY. Expert Rev. Vaccines 2011; 10: 463
    • 6b Garcon N, Van Mechelen M. Expert Rev. Vaccines 2011; 10: 471
    • 7a Stork G, Uyeo S, Wakamatsu T, Grieco P, Labovitz J. J. Am. Chem. Soc. 1971; 93: 4945
    • 7b Surendra K, Corey EJ. J. Am. Chem. Soc. 2009; 131: 13928
  • 9 Yu B. Acc. Chem. Res. 2018; 51: 507
    • 10a Sheng H, Sun H. Nat. Prod. Rep. 2011; 28: 543
    • 10b Grishko VV, Tolmacheva IA, Pereslavtseva AV. Chem. Nat. Compd. 2015; 51: 1
    • 10c Kvasnica M, Urban M, Dickinson NJ, Sarek J. Nat. Prod. Rep. 2015; 32: 1303
    • 10d Zhou M, Zhang R.-H, Wang M, Xu G.-B, Liao S.-G. Eur. J. Med. Chem. 2017; 131: 222
    • 10e Zhu D, Yu B. Chin. J. Chem. 2018; 36: 681

      For selected examples, see:
    • 11a Mukherjee R, Jaggi M, Rajendran P, Siddiqui MJ. A, Srivastava SK, Vardhan A, Burman AC. Bioorg. Med. Chem. Lett. 2004; 14: 2181
    • 11b Moiteiro C, Curto MJ. M, Mohamed N, Bailen M, Martinez-Diaz R, Gonzalez-Coloma A. J. Agric. Food Chem. 2006; 54: 3566
    • 11c Liao J, Sun J, Niu Y, Yu B. Tetrahedron Lett. 2011; 52: 3075

      For selected examples, see:
    • 12a Rao GS. R. S, Kondaiah P, Singh SK, Ravanan P, Sporn MB. Tetrahedron 2008; 64: 11541
    • 12b Salonatina OV, Markov AV, Logashenko EB, Korchagina DV, Zenkova MA, Salakhutdinov NF, Vlassov VV, Tolstikov GA. Bioorg. Med. Chem. 2014; 22: 585
    • 12c Rogati F, Milla E, Appendino G, Correa A, Caprioglio D, Minassi A, Munoz E. ACS Med. Chem. Lett. 2019; 10: 606

      For selected examples, see:
    • 13a Chadalapaka G, Jutooru I, McAlees A, Stefanac T, Safe S. Bioorg. Med. Chem. Lett. 2008; 18: 2633
    • 13b Leal AS, Wang R, Salvador JA. R, Jing Y. ChemMedChem 2012; 7: 1635
    • 13c Pettit GR, Melody N, Hempenstall F, Chapuis J.-C, Groy TL, Williams L. J. Nat. Prod. 2014; 77: 863
    • 13d Borkova L, Gurska S, Dzubak P, Burianova R, Hajduch M, Sarek J, Popa I, Urban M. Eur. J. Med. Chem. 2016; 121: 120

      For selected examples, see:
    • 14a Pohjala L, Alakurtti S, Ahola T, Yli-Kauhaluoma J, Tammela P. J. Nat. Prod. 2009; 72: 1917
    • 14b Alakurtti S, Heiska T, Kiriazis A, Sacerdoti-Sierra N, Jaffe CL, Yli-Kauhaluoma J. Bioorg. Med. Chem. 2010; 18: 1573

      For selected examples see:
    • 15a Hu J, Zhang M, Yu LB, Ju Y. Bioorg. Med. Chem. Lett. 2010; 20: 4342
    • 15b Silhar P, Alakurtti S, Capkova K, Feng X, Shoemaker CB, Yli-Kauhaluoma J, Janda KD. Bioorg. Med. Chem. Lett. 2011; 21: 2229
    • 15c Liu W, Li W, Spannenberg A, Junge K, Beller M. Nat. Catal. 2019; 2: 523
  • 16 For one selected example, see: Li X, Wang Y, Gao Y, Li L, Guo X, Liu D, Jing Y, Zhao L. Org. Biomol. Chem. 2014; 12: 6706
    • 17a Wen X, Sun H, Liu J, Wu G, Zhang L, Wu X, Ni P. Bioorg. Med. Chem. Lett. 2005; 15: 4944
    • 17b Wen X, Xia J, Cheng K, Zhang L, Zhang P, Liu J, Zhang L, Ni P, Sun H. Bioorg. Med. Chem. Lett. 2007; 17: 5777
    • 18a Honda T, Rounds BV, Bore L, Finlay HJ, Favaloro FG, Shuh N, Wang Y, Sporn MB, Gribble GW. J. Med. Chem. 2000; 43: 4233
    • 18b Sporn MB, Liby KT, Yore MM, Fu L, Lopchuk JM, Gribble GW. J. Nat. Prod. 2011; 74: 537
    • 18c Fu L, Gribble GW. Org. Lett. 2013; 15: 1622
  • 19 Chen D, Zhang P, Sun Y, Wang P, Zhang C, Kong L, Zhang J, Sun H, Wen X. Org. Biomol. Chem. 2016; 14: 11154
    • 20a Šarek J, Klinot J, Džubák P, Klinotová E, Nosková V, Křečke V, Kořínková G, Thomson JO, Janoštáková A, Wang S, Parsons S, Fischer PM, Zhelev N, Hajdúch M. J. Med. Chem. 2003; 46: 5402
    • 20b Biedermann D, Sarek J, Klinot J, Hajduch M, Dzubak P. Synthesis 2005; 1157
  • 21 Shao L.-D, Xu J, Li X.-N, Zhang Z.-J, Shi X, Ren J, He J, Zhao Y, Leng Y, Xia C, Zhao Q.-S. RSC Adv. 2016; 6: 35792
  • 22 Shen R, Laval S, Cao X, Yu B. J. Org. Chem. 2018; 83: 2601
  • 23 Michaudel Q, Journot G, Reguerio-Ren A, Goswami A, Guo Z, Tully TP, Zou L, Ramabhadran RO, Houk KN, Baran PS. Angew. Chem. Int. Ed. 2014; 53: 12091
  • 24 Karimov RR, Sharma A, Hartwig JF. ACS Cent. Sci. 2016; 2: 715
  • 25 Ma Y, Li W, Yu B. Acta Chim. Sinica 2013; 71: 541
  • 26 Schönecker B, Zheldakova T, Liu Y, Kötteritzsch M, Günther W, Görls H. Angew. Chem. Int. Ed. 2003; 42: 3240
  • 27 Mu T, Wei B, Zhu D, Yu B. Nat. Commun. 2020; 11: 4371
  • 28 Barton DH. R, Sammes PG, Silva M. Tetrahedron 1966; 22: 57
  • 29 Baldwin JE, Jones RH, Najera C, Yus M. Tetrahedron 1985; 41: 699
  • 30 Simmons EM, Hartwig JF. Nature 2012; 483: 70
  • 31 Konoike T, Takahashi K, Araki Y, Horibe I. J. Org. Chem. 1997; 62: 960
  • 32 Garcia-Granados A, Lopez PE, Melguizo E, Parra A, Simeo Y. J. Org. Chem. 2007; 72: 3500
  • 33 Desai LV, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 9542
  • 34 Concepcion JI, Francisco CG, Hernandez R, Salazar JA, Suarez E. Tetrahedron Lett. 1984; 25: 1953
  • 35 Berger M, Knittl-Frank C, Bauer S, Winter G, Maulide N. Chem 2020; 6: 1183
  • 36 Griffith WP, Ley SV, Whitcombe GP, White AD. J. Chem. Soc., Chem. Commun. 1987; 1625
  • 37 Zeng Z, Liao J.-X, Hu Z.-N, Liu D.-Y, Zhang Q.-J, Sun J.-S. Org. Chem. Front. 2021; 8: 748
  • 38 Thibeault D, Legault J, Bouchard J, Pichette A. Tetrahedron Lett. 2007; 48: 8416
  • 39 Garcia-Granados A, Lopez PE, Melguizo E, Moliz JN, Parra A, Simeo Y. J. Org. Chem. 2003; 68: 4833
  • 40 Elkin M, Scruse AC, Turlik A, Newhouse TR. Angew. Chem. Int. Ed. 2019; 58: 1025
  • 41 Kacharov AD, Yemets SV, Nemykin VN, Kacharova LM, Fokin AZ. Krasutsky P. A. RSC Adv. 2013; 3: 19057
  • 42 Kallepu S, Sanjeev K, Chegondi R, Mainkar PS, Chandrasekhar S. Org. Lett. 2018; 20: 7121
  • 43 Urban M, Sarek J, Tislerova I, Dzubak P, Hajduch M. Bioorg. Med. Chem. 2005; 13: 5527
  • 44 Heller L, Obernauer A, Csuk R. Bioorg. Med. Chem. 2015; 23: 3002
  • 45 Hernandez R, Leon EI, Moreno P, Riesco-Fagundo C, Suarez E. J. Org. Chem. 2004; 69: 8437
  • 46 Deng Y, Snyder JK. J. Org. Chem. 2002; 67: 2864
  • 47 Garcia-Granados A, Lopez PE, Melguizo E, Parra A, Simeo Y. Tetrahedron Lett. 2003; 44: 6673
  • 48 Zhang P, Xu L, Qian K, Liu J, Zhang L, Lee K.-H, Sun H. Bioorg. Med. Chem. Lett. 2011; 21: 338
  • 49 Garcia-Granados A, Lopez PE, Melguizo E, Parra A, Simeo Y. Tetrahedron 2004; 60: 1491
  • 50 Fu H.-J, Zhou Y.-R, Bao B.-H, Jia M.-X, Zhao Y, Zhang L, Li J.-X, He H.-L, Zhou X.-M. J. Med. Chem. 2014; 57: 4692
  • 51 Khusnutdinova EF, Kazakova OB, Lobov AN, Kukovinets OS, Suponitsky KY, Meyers CB, Prichard MN. Org. Biomol. Chem. 2019; 17: 585
    • 52a Niesen A, Barthel A, Kluge R, Kowitzsch A, Strohl D, Schwarz S, Csuk R. Arch. Pharm. 2009; 342: 569
    • 52b Csuk R, Niesen-Barthel A, Barthel A, Kluge R, Strohl D. Eur. J. Med. Chem. 2010; 45: 3840
  • 53 Chung A, Miner MR, Richert KJ, Rieder CJ, Woerpel KA. J. Org. Chem. 2015; 80: 266
  • 54 Shen R, Cao X, Lavel S, Sun J, Yu B. J. Org. Chem. 2016; 81: 10279
  • 55 Kren V, Martinkova L. Curr. Med. Chem. 2001; 8: 1303
    • 56a Yu B, Sun J. Chem. Asian J. 2009; 4: 642
    • 56b Yu B, Sun J. Chem. Commun. 2010; 46: 4668
    • 56c Gauthier C, Legault J, Piochon-Gauthier M, Pichette A. Phytochem. Rev. 2011; 10: 521
    • 56d Yang Y, Lavel S, Yu B. Adv. Carbohydr. Chem. Biol. 2014; 37: 137
  • 57 Fernández-Tejada A, Tan DS, Gin DY. Acc. Chem. Res. 2016; 49: 1741
  • 58 Zeng Z.-Y, Liao J.-X, Hu Z.-N, Liu D.-Y, Zhang Q.-J, Sun J.-S. Org. Lett. 2020; 22: 8613
    • 59a Liu H, Zhou S.-Y, Wen G.-E, Liu X.-X, Liu D.-Y, Zhang Q.-J, Schmidt RR, Sun J.-S. Org. Lett. 2019; 21: 8049
    • 59b Liu H, Hansen T, Zhou S.-Y, Wen G.-E, Liu X.-X, Zhang Q.-J, Codee JD. C, Schmidt RR, Sun J.-S. Org. Lett. 2019; 21: 8713
  • 60 Yu B, Sun J, Yang X. Acc. Chem. Res. 2012; 45: 1227
  • 61 Shao W, Cao X, Shen L, Zhang F, Yu B. Asian J. Org. Chem. 2017; 6: 1270
  • 62 Mydock LK, Demchenko AV. Org. Lett. 2008; 10: 2107
  • 63 Yu J, Sun J, Niu Y, Li R, Liao J, Zhang F, Yu B. Chem. Sci. 2013; 4: 3899
  • 64 Liu T, Liao J.-X, Hu Y, Tu Y.-H, Sun J.-S. J. Org. Chem. 2017; 82: 4170
  • 65 Spijker NM, van Boeckel CA. A. Angew. Chem., Int. Ed. Engl. 1991; 30: 180
    • 66a Fernández-Tejada A, Chea ER, George C, Pillarsetty NV, Gardner JR, Livingston PO, Ragupathi G, Lewis JS, Tan DS, Gin DY. Nat. Chem. 2014; 6: 635
    • 66b Perlikova P, Kvasnica M, Urban M, Hajduch M, Sarek J. Bioconjugate Chem. 2019; 30: 2844
  • 67 Schmidt RR, Michel J. Angew. Chem., Int. Ed. Engl. 1980; 19: 731