Synthesis 2022; 54(04): 953-964
DOI: 10.1055/a-1529-7739
special topic
Cycloadditions – Established and Novel Trends – in Celebration of the 70th Anniversary of the Nobel Prize Awarded to Otto Diels and Kurt Alder

[4+n] Annulation Reactions Using ortho-Chloromethyl Anilines as Aza-ortho-Quinone Methide Precursors

Xiao-Yu He
a   College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002   P. R. of China
,
Yu-Hong Ma
a   College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002   P. R. of China
,
Qing-Qing Yang
a   College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002   P. R. of China
,
Wen-Jing Xiao
b   Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079   P. R. of China
› Author Affiliations
We thank the National Natural Science Foundation of China (Grant No. 21702121) and the 111 Project (D20015) for support of our research in this area.


Abstract

Aza-ortho-quinone methides are important reactive intermediates that have found broad applications in synthetic chemistry. Recently, 1,4-elimination of ortho-chloromethyl aniline derivatives has emerged as a novel, powerful and convenient method for aza-ortho-quinone methide generation. This review will highlight the recent applications of aza-ortho-quinone methide precursors in annulation reactions to access various biologically important nitrogen-containing heterocycles. The general mechanisms are briefly discussed as well.

1 Introduction

2 [4+n] Annulation Reactions Using ortho-Chloromethyl Anilines as Aza-ortho-Quinone Methide Precursors

2.1 [4+2] Annulation Reactions

2.2 [4+1] Annulation Reactions

2.3 [4+3] Annulation Reactions

3 Conclusion and Perspective



Publication History

Received: 27 May 2021

Accepted after revision: 16 June 2021

Accepted Manuscript online:
16 June 2021

Article published online:
27 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Joule JA, Mills K. Heterocyclic Chemistry, 5th ed. Blackwell; Oxford: 2010
  • 2 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
  • 4 Ma Y.-H, He X.-Y, Yang Q.-Q, Boucherif A, Xuan J. Asian J. Org. Chem. 2021; 10: 1233

    • Pyrolysis methods:
    • 5a Mao Y.-L, Boekelheide V. J. Org. Chem. 1980; 45: 1547
    • 5b Consonni R, Croce PD, Ferraccioli R, La Rosa C. J. Chem. Soc., Perkin Trans. 1 1996; 1809
    • 5c Martín N, Martínez-Grau A, Sánchez L, Seoane C, Torres M. J. Org. Chem. 1998; 63: 8074
    • 5d Ohno M, Sato H, Eguchi S. Synlett 1999; 207
    • 5e Zakrzewski P, Gowan M, Trimble LA, Lau CK. Synthesis 1999; 1893
    • 5f Wojciechowski K, Kosinski S. Eur. J. Org. Chem. 2002; 947

      Photolysis methods:
    • 6a Burgess EM, McCullagh L. J. Am. Chem. Soc. 1966; 88: 1580
    • 6b Mukhina OA, Bhuvan Kumar NN, Arisco TM, Valiulin RA, Metzel GA, Kutateladze AG. Angew. Chem. Int. Ed. 2011; 50: 9423
    • 6c Kuznetsov DM, Mukhina OA, Kutateladze AG. Angew. Chem. Int. Ed. 2016; 55: 6988
    • 6d Liu Y.-Y, Yu X.-Y, Chen J.-R, Qiao M.-M, Qi X, Shi D.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2017; 56: 9527
    • 6e Kuznetsov DM, Kutateladze AG. J. Am. Chem. Soc. 2017; 139: 16584
    • 6f Liang D, Rao L, Xiao C, Chen J.-R. Org. Lett. 2019; 21: 8783

      Brønsted acid methods:
    • 7a Mugrage B, Diefenbacher C, Somers J, Parker D, Parker TT. Tetrahedron Lett. 2000; 41: 2047
    • 7b Li G, Liu H, Lv G, Wang Y, Fu Q, Tang Z. Org. Lett. 2015; 17: 4125
    • 7c Mei G.-J, Zhu Z.-Q, Zhao J.-J, Bian C.-Y, Chen J, Chen R.-W, Shi F. Chem. Commun. 2017; 53: 2768
  • 8 Steinhagen H, Corey EJ. Angew. Chem. Int. Ed. 1999; 38: 1928
    • 10a Steinhagen H, Corey EJ. Org. Lett. 1999; 1: 823
    • 10b Omura S, Nakagawa A. Tetrahedron Lett. 1981; 22: 2199
    • 10c Hill ML, Raphael RA. Tetrahedron 1990; 46: 4587
    • 10d Morimoto Y, Shirahama H. Tetrahedron 1996; 52: 10609
    • 11a Avemaris F, Vanderheiden S, Bräse S. Tetrahedron 2003; 59: 6785
    • 11b Keck D, Vanderheiden S, Bräse S. Eur. J. Org. Chem. 2006; 21: 4916
  • 12 Numata A, Takahashi C, Ito Y, Takada T, Kawai K, Usami Y, Matsumura E, Imachi M, Ito T, Hasegawa T. Tetrahedron Lett. 1993; 34: 2355
    • 13a Boal BW, Schammel AW, Garg NK. Org. Lett. 2009; 11: 3458
    • 13b Schammel AW, Boal BW, Zu L, Mesganaw T, Garg NK. Tetrahedron 2010; 66: 4687
    • 14a May JA, Zeidan RK, Stoltz BM. Tetrahedron Lett. 2003; 44: 1203
    • 14b May JA, Stoltz BM. Tetrahedron 2006; 62: 5262
    • 15a Wu H.-X, Xue F, Xiao X, Qin Y. J. Am. Chem. Soc. 2010; 132: 14052
    • 15b Du Y, Wu H.-X, Song H, Qin Y, Zhang D. Chin. J. Chem. 2012; 30: 1970
  • 16 Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
  • 17 Lei L, Yao Y.-Y, Jiang L.-J, Lu X, Liang C, Mo D.-L. J. Org. Chem. 2020; 85: 3059
  • 18 Jiang S.-P, Lu W.-Q, Liu Z, Wang G.-W. J. Org. Chem. 2018; 83: 1959
  • 19 Lee A, Younai A, Price CK, Izquierdo J, Mishra RK, Scheidt KA. J. Am. Chem. Soc. 2014; 136: 10589
  • 20 Ji H, He C, Gao H, Fu W, Xu J. Synthesis 2021; 53: 1349
  • 21 Wang H.-Q, Ma W, Sun A, Sun X.-Y, Jiang C, Zhang Y.-C, Shi F. Org. Biomol. Chem. 2021; 19: 1334
    • 22a Liang D, Xiao W.-J, Chen J.-R. Synthesis 2020; 52: 2469
    • 22b Cheng X, Zhou S.-J, Xu G.-Y, Wang L, Yang Q.-Q, Xuan J. Adv. Synth. Catal. 2020; 362: 523
    • 22c Liang D, Tan L.-P, Xiao W.-J, Chen J.-R. Chem. Commun. 2020; 56: 3777
  • 23 Zheng Y, Tu L, Li N, Huang R, Feng T, Sun H, Li Z, Liu J. Adv. Synth. Catal. 2019; 361: 44
    • 24a Xuan J, Cao X, Cheng X. Chem. Commun. 2018; 54: 5154
    • 24b Bouakher AE, Martel A, Comesse S. Org. Biomol. Chem. 2019; 17: 8467
  • 25 Jin Q, Gao M, Zhang D, Jiang C, Yao N, Zhang J. Org. Biomol. Chem. 2018; 16: 7336
    • 26a Joule JA. Product Class 13: Indole and Its Derivatives. In Hetarenes and Related Ring Systems: Fused Five-Membered Hetarenes with One Heteroatom, Science of Synthesis Vol. 10. Thomas EJ. Thieme; Stuttgart: 2001
    • 26b Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 26c Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 26d Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
    • 26e Hua T.-B, Xiao C, Yang Q.-Q, Chen J.-R. Chin. Chem. Lett. 2020; 31: 311
  • 27 Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Rev. 2015; 115: 5301
  • 28 Lu L.-Q, Chen J.-R, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
  • 29 Yang Q.-Q, Xiao C, Lu L.-Q, An J, Tan F, Li B.-J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 9137
  • 30 Yang Q.-Q, Wang Q, An J, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2013; 19: 8401
  • 31 Lu L.-Q, Zhang J.-J, Li F, Cheng Y, An J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2009; 48: 9542
  • 32 Huang H, Yang Y, Zhang X, Zeng W, Liang Y. Tetrahedron Lett. 2013; 54: 6049
    • 33a Hovey MT, Check CT, Sipher AF, Scheidt KA. Angew. Chem. Int. Ed. 2014; 53: 9603
    • 33b Sharma HA, Hovey MT, Scheidt KA. Chem. Commun. 2016; 52: 9283
  • 34 Jong JA. W, Bao X, Wang Q, Zhu J. Helv. Chim. Acta 2019; 102: e1900002
  • 35 Gui H.-Z, Wu X.-Y, Wei Y, Shi M. Adv. Synth. Catal. 2019; 361: 5466
  • 36 Eckert KE, Lepore AJ, Ashfeld BL. Helv. Chim. Acta 2019; 102: e1900192
  • 37 Hua T.-B, Chao F, Wang L, Yan CY, Xiao C, Yang Q.-Q, Xiao W.-J. Adv. Synth. Catal. 2020; 362: 2615
  • 38 Shi Y, Wang G, Wang H, Deng B, Gao T, Wang J, Guo H, Wu M, Sun S. New J. Chem. 2020; 44: 14477
    • 39a Harmata M. Adv. Synth. Catal. 2006; 348: 2297
    • 39b Jones DE, Harmata M. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses . Nishiwaki N. John Wiley & Sons; Hoboken: 2014
  • 41 Zhan G, Shi M.-L, He Q, Du W, Chen Y.-C. Org. Lett. 2015; 17: 4750
  • 42 Liu J.-Y, Lu H, Li C.-G, Liang Y.-M, Xu P.-F. Synlett 2016; 27: 1287
  • 43 Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
    • 44a Wang L, Li S, Blümel M, Philipps AR, Wang A, Puttreddy R, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 11110
    • 44b Li Y, Zhang Z. Eur. J. Org. Chem. 2019; 2989
  • 45 Hua T.-B, Yang Q.-Q, Xiao W.-J. Chin. J. Org. Chem. 2020; 40: 3559
  • 46 Chen L, Yang G, Wang J, Jia Q, Wei J, Du Z. RSC Adv. 2015; 5: 76696
  • 47 Zhi Y, Zhao K, Shu T, Enders D. Synthesis 2016; 48: 238
  • 48 Jin Q, Zhang J, Jiang C, Zhang D, Gao M, Hu S. J. Org. Chem. 2018; 83: 8410
  • 49 Meng Z, Yang WR, Zheng J. Tetrahedron Lett. 2019; 60: 1758
  • 50 Zheng Y.-S, Tu L, Gao L.-M, Huang R, Feng T, Sun H, Wang W.-X, Li Z.-H, Liu J.-K. Org. Biomol. Chem. 2018; 16: 2639
  • 51 Zhang X, Pan Y, Liang P, Pang L, Ma X, Jiao W, Shao H. Adv. Synth. Catal. 2018; 360: 3015
  • 52 Long W, Chen S, Zhang X, Fang L, Wang Z. Tetrahedron 2018; 74: 6155
  • 53 Guo Z, Jia H, Liu H, Wang Q, Huang J, Guo H. Org. Lett. 2018; 20: 2939
    • 54a Jin Q, Zhang D, Zhang J. Org. Biomol. Chem. 2019; 17: 9708
    • 54b Hu S, Zhang J, Jin Q. Tetrahedron Lett. 2020; 61: 152225