Synthesis 2021; 53(16): 2787-2797
DOI: 10.1055/a-1464-2524
short review

Cobalt-Catalyzed Isomerization of Alkenes

,
National Science Foundation Division of Chemistry (CHE-1554906).


In memory of Professor Alan H. Cowley (1934–2020).

Abstract

Catalytic isomerization of alkenes is a highly atom-economical approach to upgrade from lower- to higher-value alkenes. Consequently, tremendous attention has been devoted to the development of this transformation, approaches which exploit cobalt catalysis are particularly attractive. This short review focuses on the cobalt-catalyzed alkene isomerization, including positional isomerization, geometric isomerization, and cycloisomerization. Three main types of reaction mechanism have been discussed to help the reader to better understand and make meaningful comparison between the different transformations.

1 Introduction

2 Positional Isomerization

3 Geometric Isomerization

4 Cycloisomerization

5 Conclusion and Outlook



Publication History

Received: 07 February 2021

Accepted after revision: 25 March 2021

Accepted Manuscript online:
25 March 2021

Article published online:
12 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For review of green chemistry, see:
    • 1a Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; New York: 1998
    • 1b Sheldon RA, Arends I, Hanefeld U. Green Chemistry and Catalysis . Wiley-VCH; Weinheim: 1997
    • 1c Li C.-J, Trost BM. Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 13197
    • 1d Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Science 2020; 367: 397

      For selected examples of noble metal-catalyzed alkene isomerization:
    • 3a Grotjahn DB, Larsen CR, Gustafson JL, Nair R, Sharma A. J. Am. Chem. Soc. 2007; 129: 9592
    • 3b Erdogan G, Grotjahn DB. J. Am. Chem. Soc. 2009; 131: 10354
    • 3c Lim HJ, Smith CR, RajanBabu TV. J. Org. Chem. 2009; 74: 4565
    • 3d Scarso A, Colladon M, Sgarbossa P, Santo C, Michelin RA, Strukul G. Organometallics 2010; 29: 1487
    • 3e Gauthier D, Lindhardt AT, Olsen EP. K, Overgaard J, Skrydstrup T. J. Am. Chem. Soc. 2010; 132: 7998
    • 3f Larsen CR, Grotjahn DB. J. Am. Chem. Soc. 2012; 134: 10357
    • 3g Clark JR, Griffiths JR, Diver ST. J. Am. Chem. Soc. 2013; 135: 3327
    • 3h Zhuo L.-G, Yao Z.-K, Yu Z.-X. Org. Lett. 2013; 15: 4634
    • 3i Larionov E, Lin L, Guénée L, Mazet C. J. Am. Chem. Soc. 2014; 136: 16882
    • 3j Larsen CR, Erdogan G, Grotjahn DB. J. Am. Chem. Soc. 2014; 136: 1226
    • 3k Lin L, Romano C, Mazet C. J. Am. Chem. Soc. 2016; 138: 10344
    • 3l Wang Y, Qin C, Jia X, Leng X, Huang Z. Angew. Chem. Int. Ed. 2017; 56: 1614
    • 3m Huang R.-Z, Lau K.-K, Li Z.-F, Liu T.-L, Zhao Y. J. Am. Chem. Soc. 2018; 140: 14647

      For reviews of remote functionalization, see:
    • 4a Vasseur A, Bruffaerts J, Marek I. Nat. Chem. 2016; 8: 209
    • 4b Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent. Sci. 2018; 4: 153
    • 4c Fiorito D, Scaringi S, Mazet C. Chem. Soc. Rev. 2021; 50: 1391

      For selected examples of photocatalyzed geometric isomerization of alkenes, see:
    • 5a Metternich JB, Gilmour R. J. Am. Chem. Soc. 2015; 137: 11254
    • 5b Cai W, Fan H, Ding D, Zhang Y, Wang W. Chem. Commun. 2017; 53: 12918
    • 5c Molloy JJ, Metternich JB, Daniliuc CG, Watson AJ. B, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 3168
    • 5d Faßbender SI, Molloy JJ, Mück-Lichtenfeld C, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 18619
    • 5e Xu J, Liu N, Lv H, He C, Liu Z, Shen X, Cheng F, Fan B. Green Chem. 2020; 22: 2739

      For reviews of cycloisomerization of dienes, see:
    • 6a Yamamoto Y. Chem. Rev. 2012; 112: 4736
    • 6b Watson ID. G, Toste FD. Chem. Sci. 2012; 3: 2899
    • 6c Marinetti A, Jullien H, Voituriez A. Chem. Soc. Rev. 2012; 41: 4884
    • 6d Michelet V, Toullec PY, Genêt J.-P. Angew. Chem. Int. Ed. 2008; 47: 4268
  • 7 Shevick SL, Obradors C, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 12056
  • 8 Hendrix WT, von Rosenberg JL. J. Am. Chem. Soc. 1976; 98: 4850
  • 9 Satyanarayana N, Periasamy M. J. Organomet. Chem. 1987; 319: 113
  • 10 Kobayashi T, Yorimitsu H, Oshima K. Chem. Asian J. 2009; 4: 1078
  • 11 Crossley SW. M, Barabé F, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 16788
  • 12 Li G, Kuo JL, Han A, Abuyuan JM, Young LC, Norton JR, Palmer JH. J. Am. Chem. Soc. 2016; 138: 7698
  • 13 Meng Q.-Y, Schirmer TE, Katou K, König B. Angew. Chem. Int. Ed. 2019; 58: 5723
  • 14 Zhang S, Bedi D, Cheng L, Unruh DK, Li G, Findlater M. J. Am. Chem. Soc. 2020; 142: 8910
  • 15 Zhao J, Cheng B, Chen C, Lu Z. Org. Lett. 2020; 22: 837
  • 16 Liu H, Cai C, Ding Y, Chen J, Liu B, Xia Y. ACS Omega 2020; 5: 11655
  • 17 Bergamaschi E, Beltran F, Teskey CJ. Chem. Eur. J. 2020; 26: 5180
  • 18 Delgado KR, Youmans DD, Diver ST. Org. Lett. 2020; 22: 750
  • 19 Chen C, Dugan TR, Brennessel WW, Weix DJ, Holland PL. J. Am. Chem. Soc. 2014; 136: 945
  • 20 Schmidt A, Hilt G. Chem. Asian J. 2014; 9: 2407
  • 21 Schmidt A, Nödling AR, Hilt G. Angew. Chem. Int. Ed. 2015; 54: 801
  • 22 Liu X, Zhang W, Wang Y, Zhang Z.-X, Jiao L, Liu Q. J. Am. Chem. Soc. 2018; 140: 6873
  • 23 Zhang Z.-X, Chen S.-C, Jiao L. Angew. Chem. Int. Ed. 2016; 55: 8090
  • 24 Huang G, Ke M, Tao Y, Chen F. J. Org. Chem. 2020; 85: 5321
    • 25a Terry EM, Eichelberger L. J. Am. Chem. Soc. 1925; 47: 1402
    • 25b Dickinson RG, Lotzkar H. J. Am. Chem. Soc. 1937; 59: 472
    • 25c Fitzpatrick JD, Orchin M. J. Org. Chem. 1957; 22: 1177
  • 26 Liu H, Xu M, Cai C, Chen J, Gu Y, Xia Y. Org. Lett. 2020; 22: 1193
  • 28 Matos JL. M, Green SA, Chun Y, Dang VQ, Dushin RG, Richardson P, Chen JS, Piotrowski DW, Paegel BM, Shenvi RA. Angew. Chem. Int. Ed. 2020; 59: 12998
  • 29 Shi S, Kuo JL, Chen T, Norton JR. Org. Lett. 2020; 22: 6171
  • 30 Liu J, Yang Z, Zheng M, Wu H, Chen N, Xu J. Synthesis 2019; 51: 3320