Abstract
In this account several tools necessary for the synthesis of
peptides from α-amino acids are considered. Different strategies for
the asymmetric synthesis of α-amino acids are studied.
New chiral glycine and alanine imines as acyclic and cyclic templates
for the asymmetric synthesis of different types of mono as well
as dialkylated α-amino acids with acyclic and heterocyclic
structures are reviewed. Their diastereoselective alkylation and
final hydrolysis takes place under very mild reaction conditions.
New polymer-supported cinchonidine and cinchonine ammonium salts
and chiral binaphthol-derived aminoalkoxides (BINOLAMs), have been developed
as catalysts for the asymmetric PTC alkylation of imino esters.
The use of chiral oxazinone and pyrazinone α,β-didehydroamino
acid derivatives in hydrogenation, Heck-arylation, cyclopropanation
and Diels-Alder cycloaddition reactions for the asymmetric
synthesis of α-amino acids are also studied. Azomethine
ylides derived from saturated oxazinones can also be used in the
asymmetric synthesis of prolines by means of diastereoselective dipolar
cycloadditions. For the protection of α-amino acids new
efficient reagents, Fmoc-P-OSu and Cbz-P-OSu, derived from poly(styrene-co -N -hydroxymaleimide)
named as polymeric N -hydroxysuccinimide
(P-HOSu), have been developed. Several new systems such as polymer-supported
P-HOSu/DCC and polystyrene-bound P-TBTU or P-HBTU, together
with non- polymeric thiouronium salts derived from 2-mercaptopyridine-1-oxide
and TMU, such as HOTT and TOTT, and from DMPU, such as HODT and TODT,
have been used as peptide coupling reagents, in solution and solid
phase peptide synthesis, as well as for the preparation of primary
amides, Weinreb amides and other hydroxamates, directly from carboxylic
acids.
1 Introduction
2 Asymmetric Synthesis of α-Amino Acids
2.1 Electrophilic Alkylation of Chiral Glycine and Alanine Templates
2.2 Electrophilic Alkylation with Chiral Phase-transfer Catalysts
2.3 Chiral α,β-Didehydroamino Acid Derivatives
2.4 Chiral Azomethine Ylides
3 Protecting-group Reagents
4 Peptide Coupling Reagents
5 Conclusion
Key words
amino acids - phase-transfer catalysis - asymmetric catalysis - protecting groups
- peptides
References
<A NAME="RA29301ST-1A">1a </A>
Amino
Acids Peptides and Proteins
Vol. 1-28:
Specialist Periodical
Reports Chem. Soc.;
London:
1968-1995.
<A NAME="RA29301ST-1B">1b </A>
Wipf P.
Chem.
Rev.
1995,
95:
2115
<A NAME="RA29301ST-1C">1c </A>
Humphrey JM.
Chamberlin AR.
Chem.
Rev.
1997,
97:
2243
<A NAME="RA29301ST-1D">1d </A>
Fletcher MD.
Campbell MM.
Chem.
Rev.
1998,
98:
763
<A NAME="RA29301ST-1E">1e </A>
Andrews MJI.
Tabor AB.
Tetrahedron
1999,
55:
11711
<A NAME="RA29301ST-1F">1f </A>
Albericio F.
Kates SA. In Solid-Phase Synthesis,
A Practical Guide
Kates SA.
Albericio F.
Marcel Dekker;
New
York:
2000.
p.275
<A NAME="RA29301ST-2A">2a </A>
Coppola GM.
Schuster HF.
Asymmetric Synthesis-Construction of Chiral
Molecules Using Amino Acids
John Wiley and Sons;
New
York:
1987.
<A NAME="RA29301ST-2B">2b </A>
Williams RM.
Synthesis of Optically Active Amino Acids
Pergamon
Press;
Oxford:
1989.
<A NAME="RA29301ST-2C">2c </A>
Heimgartner H.
Angew.
Chem., Int. Ed. Engl.
1991,
30:
238
<A NAME="RA29301ST-2D">2d </A>
Cintas P.
Tetrahedron
1991,
47:
6079
<A NAME="RA29301ST-2E">2e </A>
Williams RM.
Hendrix JA.
Chem.
Rev.
1992,
92:
889
<A NAME="RA29301ST-2F">2f </A>
Duthaler RO.
Tetrahedron
1994,
50:
1540
<A NAME="RA29301ST-2G">2g </A>
Bailey PD.
Clayson J.
Boa AN.
Contemp. Org. Synth.
1995,
2:
173
<A NAME="RA29301ST-2H">2h </A>
North M.
Contemp.
Org. Synth.
1996,
3:
323
<A NAME="RA29301ST-2I">2i </A>
Studer A.
Synthesis
1996,
793
<A NAME="RA29301ST-2J">2j </A>
Seebach D.
Sting AR.
Hoffmann M.
Angew.
Chem., Int. Ed. Engl.
1996,
35:
2709
<A NAME="RA29301ST-2K">2k </A>
Cativiela C.
Díaz-de-Villegas MD.
Tetrahedron:
Asymmetry
1998,
9:
3517
<A NAME="RA29301ST-2L">2l </A>
Cativiela C.
Díaz-de-Villegas MD.
Tetrahedron: Asymmetry
2000,
11:
645
<A NAME="RA29301ST-3A">3a </A>
Kocienski PJ.
Protecting Groups
Thieme
Verlag;
Stuttgart:
1994.
<A NAME="RA29301ST-3B">3b </A>
Greene TW.
Wuts PGM.
Protective Groups
in Organic Synthesis
3rd Ed.:
John Wiley
and Sons;
New York:
1999.
<A NAME="RA29301ST-3C">3c </A>
Jaro K.
Contemp.
Org. Synth.
1995,
2:
315
<A NAME="RA29301ST-3D">3d </A>
Jaro K.
Contemp.
Org. Synth.
1996,
3:
397
<A NAME="RA29301ST-3E">3e </A>
Jaro K.
Contemp.
Org. Synth.
1997,
4:
454
<A NAME="RA29301ST-3F">3f </A>
Schelhaas M.
Waldmann H.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2056
<A NAME="RA29301ST-3G">3g </A>
Jarowicki K.
Kocienski PJ.
J. Chem. Soc.,
Perkin Trans. 1
1998,
4005
<A NAME="RA29301ST-3H">3h </A>
Jaro K.
J. Chem.
Soc., Perkin Trans. 1
1999,
1589
<A NAME="RA29301ST-3I">3i </A>
Jaro K.
J. Chem.
Soc., Perkin Trans. 1
2000,
2495
<A NAME="RA29301ST-3J">3j </A>
Theodoridis G.
Tetrahedron
2000,
56:
2339
<A NAME="RA29301ST-4A">4a </A>
Albericio F.
Carpino LA.
Methods
Enzymol.
1997,
289:
104
<A NAME="RA29301ST-4B">4b </A>
Albericio F.
Chinchilla R.
Dodsworth DJ.
Nájera C.
Org. Prep. Proced.
Int.
2001,
33:
203
<A NAME="RA29301ST-5">5 </A> For a review about imines for the
synthesis of α-amino acids see:
Abellán T.
Chinchilla R.
Galindo N.
Guillena G.
Nájera C.
Sansano JM.
Eur.
J. Org. Chem.
2000,
2689
<A NAME="RA29301ST-6">6 </A>
O’Donnell MJ.
Bennett WD.
Bruder WA.
Jacobsen WN.
Knuth K.
LeClef B.
Polt RL.
Bordwell FG.
Mrozack SR.
Cripe TA.
J. Am. Chem. Soc.
1988,
110:
8520
<A NAME="RA29301ST-7">7 </A>
O’Donnell MJ.
Esikova IA.
Mi A.
Shullenberger DF.
Wu S. In Phase-Transfer Catalysis
ACS
Symposium Series 659, Chap. 10:
Halpern ME.
ACS;
Washington D.C.:
1997.
<A NAME="RA29301ST-8">8 </A>
Genet J.-P.
Juge S.
Achi S.
Mallart S.
Ruíz Montes J.
Levif G.
Tetrahedron
1988,
44:
5263
For recent uses of this auxiliary
in asymmetric synthesis see for instance:
<A NAME="RA29301ST-9A">9a </A>
Orena M.
Porzi G.
Sandri S.
Tetrahedron
Lett.
1992,
33:
3797
<A NAME="RA29301ST-9B">9b </A>
Jenssen KN.
Roos GHP.
Tetrahedron:
Asymmetry
1992,
3:
1553
<A NAME="RA29301ST-9C">9c </A>
Melnyk O.
Stephan E.
Pourcelot G.
Cresson P.
Tetrahedron
1992,
48:
841
<A NAME="RA29301ST-9D">9d </A>
Drewes SE.
Malissar DGS.
Roos GHP.
Chem. Ber.
1993,
126:
2663
<A NAME="RA29301ST-9E">9e </A>
Anand RC.
Singh V.
Tetrahedron
1993,
49:
6515
<A NAME="RA29301ST-9F">9f </A>
Cardillo G.
De Simone A.
Gentilucci L.
Sabatino P.
Tomasini C.
Tetrahedron
Lett.
1994,
35:
5051
<A NAME="RA29301ST-9G">9g </A>
Van Heerden PS.
Bezuidenhoudt BCB.
Ferreira D.
Tetrahedron Lett.
1997,
38:
1821
<A NAME="RA29301ST-9H">9h </A>
Bongini A.
Cardillo G.
Gentilucci L.
Tomasini C.
J. Org. Chem.
1997,
62:
9148
<A NAME="RA29301ST-9I">9i </A>
Trost BM.
Ceschi MA.
König B.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1486
<A NAME="RA29301ST-9J">9j </A>
Caddick S.
Jenkins K.
Treweeke N.
Candeias SX.
Afonso CAM.
Tetrahedron Lett.
1998,
39:
2203
<A NAME="RA29301ST-9K">9k </A>
Roos GHP.
Balasubramaniam S.
Synth.
Commun.
1998,
28:
3877
<A NAME="RA29301ST-9L">9l </A>
Versttg M.
Bezmidenhoudt BCB.
Ferreira D.
Tetrahedron
1999,
55:
3365
<A NAME="RA29301ST-9M">9m </A>
Cardillo G.
Gentilucci L.
Tolomelli A.
Tetrahedron
Lett.
1999,
40:
8261
<A NAME="RA29301ST-10A">10a </A>
Guillena G.
Nájera C.
Tetrahedron:
Asymmetry
1998,
9:
1125
<A NAME="RA29301ST-10B">10b </A>
Guillena G.
Nájera C.
Tetrahedron: Asymmetry
1998,
9:
3935
<A NAME="RA29301ST-10C">10c </A>
Guillena G.
Nájera C.
J. Org. Chem.
2000,
65:
7310
<A NAME="RA29301ST-11">11 </A>
Oppolzer W.
Moretti R.
Zhou C.
Helv.
Chim. Acta
1994,
77:
2363
<A NAME="RA29301ST-12">12 </A>
Kanai M.
Muraoka A.
Tanaka T.
Sawada M.
Ikota N.
Tomioka K.
Tetrahedron
1995,
51:
9349
<A NAME="RA29301ST-13">13 </A>
Seebach D.
Beck AK.
Studer A. In Modern
Synthetic Methods
VCH;
Basel:
1995.
p.1-178
<A NAME="RA29301ST-14">14 </A>
Schwesinger R.
Willaredt J.
Schlemper H.
Keller M.
Schmitt D.
Fritz H.
Chem. Ber.
1994,
127:
2435
<A NAME="RA29301ST-15A">15a </A>
Myers AG.
Yang BH.
Chen H.
Gleason JL.
J. Am.
Chem. Soc.
1994,
116:
9361
<A NAME="RA29301ST-15B">15b </A>
Myers AG.
Yoon T.
Gleason JL.
Tetrahedron Lett.
1995,
36:
4555
<A NAME="RA29301ST-15C">15c </A>
Myers AG.
Gleason JL.
Yoon T.
J. Am. Chem. Soc.
1995,
117:
8488
<A NAME="RA29301ST-15D">15d </A>
Myers AG.
Gleason JL.
Yoon T.
Kung DW.
J.
Am. Chem. Soc.
1997,
119:
656
<A NAME="RA29301ST-15E">15e </A>
Smith AB.
Benowitz AB.
Favor DA.
Sprengeler PA.
Hirsmann R.
Tetrahedron
Lett.
1997,
38:
3809
<A NAME="RA29301ST-15F">15f </A>
Myers AG.
Gleason JL.
Org.
Synth.
1998,
76:
57
<A NAME="RA29301ST-16">16 </A>
Guillena G.
Nájera C.
Tetrahedron: Asymmetry
2001,
12:
181
<A NAME="RA29301ST-17">17 </A>
Chinchilla, R. unpublished results.
<A NAME="RA29301ST-18">18 </A>
Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman JR.
Zakrzewski VG.
Montgomery JA.
Stratmann RE.
Burant JC.
Dapprich S.
Millam JM.
Daniels AD.
Kudin KN.
Strain MC.
Farkas O.
Tomasi J.
Barone V.
Cossi M.
Cammi R.
Mennucci B.
Pomelli C.
Adamo C.
Clifford S.
Ochterski J.
Petersson GA.
Ayala PY.
Cui Q.
Morokuma K.
Malick DK.
Rabuck AD.
Raghavachari K.
Foresman JB.
Cioslowski J.
Ortiz JV.
Baboul AG.
Stefanov BB.
Liu G.
Liashenko A.
Piskorz P.
Komaromi I.
Gomperts R.
Martin RL.
Fox DJ.
Keith T.
Al-Laham MA.
Peng CY.
Nanayakkara A.
Challacombe M.
Gill PMW.
Johnson B.
Chen W.
Wong MW.
Andres JL.
González C.
Head-Gordon M.
Replogle ES.
Pople JA.
Gaussian 98, Revision A.9
Gaussian
Inc.;
Pittsburgh PA:
1998.
<A NAME="RA29301ST-19A">19a </A>
Abellán T.
Chinchilla R.
Galindo N.
Nájera C.
Sansano JM.
J. Heterocycl. Chem.
2000,
37:
467
<A NAME="RA29301ST-19B">19b </A>
Abellán T.
Chinchilla R.
Galindo N.
Guillena G.
Nájera C.
Sansano JM. In Targets
in Heterocyclic Systems
Vol. 4:
Attanasi OA.
Spinelli D.
SCI;
Roma:
2000.
p.57-103
<A NAME="RA29301ST-20A">20a </A>
Caplar V.
Lisini A.
Kajfez F.
Kolbah D.
Sunjic V.
J. Org. Chem.
1978,
43:
1355
<A NAME="RA29301ST-20B">20b </A>
Schulz G.
Steglich W.
Chem. Ber.
1977,
110:
3615
<A NAME="RA29301ST-21A">21a </A>
Chinchilla R.
Falvello LR.
Galindo N.
Nájera C.
Angew.
Chem., Int. Ed. Engl.
1997,
36:
995
<A NAME="RA29301ST-21B">21b </A>
Chinchilla R.
Galindo N.
Nájera C.
Tetrahedron:
Asymmetry
1998,
9:
2769
<A NAME="RA29301ST-21C">21c </A>
Chinchilla R.
Galindo N.
Nájera C.
Synthesis
1999,
704
<A NAME="RA29301ST-22">22 </A> The only example described for the
synthesis of this kind of heterocycles is the case of 1,2,3,6-tetrahydro-6,6-dimethyl-5-phenyl-2-pyrazinone
prepared by reaction of 2,2-dimethyl-3-phenyl-2H -azirine
with glycine ethyl ester:
Alvernhe G.
Laurent A.
Masroua A.
Tetrahedron
Lett.
1983,
24:
1153
<A NAME="RA29301ST-23A">23a </A>
Abellán T.
Nájera C.
Sansano JM.
Tetrahedron: Asymmetry
1999,
9:
2769
<A NAME="RA29301ST-23B">23b </A>
Abellán T.
Nájera C.
Sansano JM.
Eur. J. Org. Chem.
2000,
2809
<A NAME="RA29301ST-24">24 </A>
Voigt K.
Stolle A.
Salaün J.
de Meijere A.
Synlett
1995,
226
<A NAME="RA29301ST-25">25 </A>
Guillena, G. private communication.
<A NAME="RA29301ST-26">26 </A> Highlights of the chemistry of AMAAs
see:
Wirth T.
Angew. Chem., Int. Ed.
Engl.
1997,
36:
225
<A NAME="RA29301ST-27A">27a </A>
O’Donnell MJ.
Aldrichimica
Acta
2001,
34:
3
<A NAME="RA29301ST-27B">27b </A>
Dolling U.-H.
Davis P.
Grabowski EJJ.
J. Am. Chem. Soc.
1984,
106:
446
<A NAME="RA29301ST-28A">28a </A>
Corey EJ.
Xu F.
Noe MC.
J. Am. Chem. Soc.
1997,
119:
12414
<A NAME="RA29301ST-28B">28b </A>
Corey EJ.
Noe MC.
Xu F.
Tetrahedron Lett.
1998,
39:
5347
<A NAME="RA29301ST-28C">28c </A>
Corey EJ.
Bo Y.
Busch-Petersen J.
J. Am. Chem. Soc.
1998,
120:
13000
<A NAME="RA29301ST-29A">29a </A>
Lygo B.
Wainwright PG.
Tetrahedron
Lett.
1997,
38:
8595
<A NAME="RA29301ST-29B">29b </A>
Lygo B.
Crosby J.
Peterson JA.
Tetrahedron Lett.
1999,
40:
1385
<A NAME="RA29301ST-29C">29c </A>
Lygo B.
Tetrahedron
Lett.
1999,
40:
1389
<A NAME="RA29301ST-29D">29d </A>
Lygo B.
Crosby J.
Peterson JA.
Tetrahedron
Lett.
1999,
40:
8671
<A NAME="RA29301ST-29E">29e </A>
Lygo B.
Crosby J.
Lowdon TR.
Wainwright PG.
Tetrahedron
2001,
57:
2391
<A NAME="RA29301ST-29F">29f </A>
Lygo B.
Crosby J.
Lowdon TR.
Peterson JA.
Wainwright PG.
Tetrahedron
2001,
57:
2403
<A NAME="RA29301ST-30A">30a </A>
Ooi T.
Kameda K.
Maruoka K.
J. Am. Chem. Soc.
1999,
121:
6519
<A NAME="RA29301ST-30B">30b </A>
Ooi T.
Takeuchi M.
Kameda K.
Maruoka K.
J. Am. Chem. Soc.
2000,
122:
5228
<A NAME="RA29301ST-30C">30c </A>
Ooi T.
Kameda K.
Tannai H.
Maruoka K.
Tetrahedron Lett.
2000,
41:
8339
<A NAME="RA29301ST-31">31 </A> For a recent review about the use
of TADDOLs as chiral auxiliaries see:
Seebach D.
Beck AK.
Heckel A.
Angew. Chem.
Int. Ed.
2001,
40:
93
<A NAME="RA29301ST-32A">32a </A>
Belokon’ YN.
Kochetkov KA.
Churkina TD.
Ikonnikov NS.
Chesnokov AA.
Larionov OV.
Singh I.
Parnar VS.
Kumar R.
Kagan HB.
Tetrahedron: Asymmetry
1999,
9:
851
<A NAME="RA29301ST-32B">32b </A>
Belokon’ YN.
Kochetkov KA.
Churkina TD.
Ikonnikov NS.
Chesnokov AA.
Larionov OV.
Singh I.
Parnar VS.
Vyskocil S.
Kagan HB.
J. Org. Chem.
2000,
65:
7041
<A NAME="RA29301ST-33A">33a </A>
Belokon’ YN.
North M.
Kublitski VS.
Ikonnikov NS.
Krasik PE.
Maleev VL.
Tetrahedron Lett.
1999,
40:
6105
<A NAME="RA29301ST-33B">33b </A>
Belokon’ YN.
Davies RG.
North M.
Tetrahedron Lett.
2000,
41:
7245
<A NAME="RA29301ST-34">34 </A>
Belokon’ YN.
Kochetkov KA.
Churkina TD.
Ikonnikov NS.
Larionov OV.
Harutyunyan SR.
Vyskocil S.
North M.
Kagan HB.
Angew.
Chem. Int. Ed.
2001,
40:
1948
<A NAME="RA29301ST-35">35 </A>
Nelson A.
Angew.
Chem. Int. Ed.
1999,
38:
1583
For recent publications on this
matter see:
<A NAME="RA29301ST-36A">36a </A>
Okino T.
Takemoto Y.
Org. Lett.
2001,
3:
1515
<A NAME="RA29301ST-36B">36b </A>
Park H.
Jeong B.
Yoo M.
Park M.
Huh H.
Jew S.
Tetrahedron
Lett.
2001,
42:
4645
<A NAME="RA29301ST-37A">37a </A>
Kobayashi N.
Iwai K.
J.
Am. Chem. Soc.
1978,
100:
7021
<A NAME="RA29301ST-37B">37b </A>
Inagaki M.
Hiratane J.
Yamamoto Y.
Oda J.
Bull. Chem. Soc. Jpn.
1987,
60:
4121
<A NAME="RA29301ST-37C">37c </A>
Sera A.
Takagi K.
Katayama H.
Yamada H.
Matsumoto K.
J.
Org. Chem.
1988,
53:
1157
<A NAME="RA2901ST-37D">37d </A>
Hodge P.
Khoshdel E.
Waterhouse J.
J.
Chem. Soc., Perkin Trans. 1
1983,
2205
<A NAME="RA29301ST-37E">37e </A>
Hodge P.
Khoshdel E.
Waterhouse J.
Fréchet JM.
J. Chem.
Soc., Perkin Trans. 1
1985,
2327
<A NAME="RA29301ST-37F">37f </A>
Hermann K.
Wynberg H.
Helv. Chim. Acta
1977,
60:
2208
<A NAME="RA29301ST-37G">37g </A>
Alvarez R.
Hourdin M.-A.
Cavé C.
d’Angelo J.
Chaminade P.
Tetrahedron
Lett.
1999,
40:
7091
<A NAME="RA29301ST-37H">37h </A>
Nandanan E.
Sudalai A.
Ravindranathan T.
Tetrahedron
Lett.
1997,
38:
2577
<A NAME="RA29301ST-37I">37i </A>
Canali L.
Song ES.
Sherrington DC.
Tetrahedron: Asymmetry
1998,
9:
1029
<A NAME="RA29301ST-37J">37j </A>
Han H.
Janda KD.
J. Am. Chem. Soc.
1996,
118:
7632
<A NAME="RA29301ST-37K">37k </A>
Han H.
Janda KD.
Tetrahedron Lett.
1997,
38:
1527
<A NAME="RA29301ST-37L">37l </A>
Song CE.
Oh CR.
Lee SW.
Canali L.
Sherrington DC.
Chem. Commun.
1998,
2435
<A NAME="RA29301ST-37M">37m </A>
Zhang Z.
Wang Y.
Zhen W.
Hodge P.
React. Funct. Polym.
1999,
41:
37
<A NAME="RA29301ST-38">38 </A>
Polystyrene crosslinked with 1% divinylbenzene
200-400 mesh 17 mmol/g.
<A NAME="RA29301ST-39">39 </A>
Chinchilla R.
Mazón P.
Nájera C.
Tetrahedron: Asymmetry
2000,
11:
3277
<A NAME="RA29301ST-40A">40a </A>
Feringa B.
Wynberg H.
Tetrahedron
Lett.
1977,
4447
<A NAME="RA29301ST-40B">40b </A>
Brussee J.
Groenendijk JLG.
Koppele JM.
Jansen ACA.
Tetrahedron
1985,
41:
3313
<A NAME="RA29301ST-41">41 </A>
Cram DJ.
Helgeson RC.
Peacock SC.
Kaplan LJ.
Domeier LA.
Moreau P.
Koga K.
Mayer JM.
Chao Y.
Siegel MG.
Hoffman DH.
Sogah GDY.
J.
Org. Chem.
1978,
43:
1930
<A NAME="RA29301ST-42">42 </A>
Casas J.
Nájera C.
Sansano JM.
Gonzalez J.
Saá JM.
Vega M.
Tetrahedron:
Asymmetry
2001,
12:
699
<A NAME="RA29301ST-43">43 </A>
Schmidt U.
Lieberknecht A.
Wild J.
Synthesis
1988,
159
<A NAME="RA29301ST-44">44 </A>
Williams RM.
Synthesis
of Optically Active Amino Acids
Chap. 6.
Pergamon
Press;
Oxford:
1989.
<A NAME="RA29301ST-45A">45a </A>
Stammer CH.
Tetrahedron
1990,
46:
2231
<A NAME="RA29301ST-45B">45b </A>
Burgess K.
Ho K.-K.
Mye-Sherman D.
Synlett
1994,
575
<A NAME="RA29301ST-46A">46a </A>
Chinchilla R.
Falvello LR.
Galindo N.
Nájera C.
Tetrahedron:
Asymmetry
1998,
9:
2223
<A NAME="RA29301ST-46B">46b </A>
Chinchilla R.
Falvello LR.
Galindo N.
Nájera C.
Tetrahedron: Asymmetry
1999,
10:
821
<A NAME="RA29301ST-46C">46c </A>
Chinchilla R.
Falvello LR.
Galindo N.
Nájera C.
J. Org. Chem.
2000,
65:
3034
<A NAME="RA29301ST-47A">47a </A>
Abellán T.
Nájera C.
Sansano JM.
Tetrahedron: Asymmetry
2000,
11:
1051
<A NAME="RA29301ST-47B">47b </A>
Abellán T.
Mancheño B.
Nájera C.
Sansano JM.
Tetrahedron
2001,
57:
6627
<A NAME="RA29301ST-48A">48a </A>
Jeffery T.
Tetrahedron
1996,
52:
10113
<A NAME="RA29301ST-48B">48b </A>
Jeffery T.
David M.
Tetrahedron Lett.
1998,
39:
5751
<A NAME="RA29301ST-49">49 </A> For a recent review about acylvinyl
synthons see:
Chinchilla R.
Nájera C.
Chem. Rev.
2000,
100:
1891
<A NAME="RA29301ST-50">50 </A> For a review about Barbier reaction
conditions see:
Alonso F.
Yus M.
Recent
Res. Devel. Org. Chem.
1997,
1:
397
<A NAME="RA29301ST-51">51 </A>
Spengler J.
Burger K.
Synthesis
1998,
67 ; and references cited therein
<A NAME="RA29301ST-52">52 </A> For a review about asymmetric ylide
reactions see:
Li A.-H.
Dai L.-X.
Aggarwal VK.
Chem. Rev.
1997,
97:
2341
<A NAME="RA29301ST-53">53 </A>
Corey EJ.
Chaykovsky M.
J. Am. Chem. Soc.
1965,
87:
1353
<A NAME="RA29301ST-54">54 </A>
PM3 calculations (Hyperchem 50 from
Hypercube Inc.) gave the following frontier obital energies for
oxazinone 51 : EHOMO = -946eV
ELUMO = 094eV
[46c ]
and for pyrazinone 52 : EHOMO = -941eV
ELUMO = -108 eV.
[47b ]
<A NAME="RA29301ST-55">55 </A> Oxazolidinone dehydroalanine derivative 43 gave exo -diastereoselectivity
after 14 d at r.t. with cyclopentadiene and 3 d at 140 ºC
with cyclohexadiene:
Pyne SG.
Dikic B.
Gordon PA.
Skelton BW.
White AH.
J.
Chem. Soc., Chem. Commun.
1991,
1505
<A NAME="RA29301ST-56A">56a </A>
Tager H.
Christensen HN.
J.
Am. Chem. Soc.
1972,
94:
968
<A NAME="RA29301ST-56B">56b </A>
Zand R.
Sellinger OZ.
Water R.
Harris R.
J. Neurochem.
1974,
23:
1201
<A NAME="RA29301ST-57">57 </A>
Gothelf KV.
Jorgensen KA.
Chem. Rev.
1998,
98:
863
<A NAME="RA29301ST-58">58 </A>
Peyronel JF.
Grisoni S.
Carboni B.
Courgeon T.
Carrié R.
Tetrahedron
1994,
50:
189
<A NAME="RA29301ST-59A">59a </A>
Williams RM.
Zhai W.
Aldons DJ.
Aldons SC.
J. Org. Chem.
1992,
57:
6527
<A NAME="RA29301ST-59B">59b </A>
Sebahar PR.
Williams RM.
J.
Am. Chem. Soc.
2000,
122:
5666
<A NAME="RA29301ST-60A">60a </A>
Anslow AS.
Harwood LM.
Phillips H.
Watkin D.
Tetrahedron: Asymmetry
1991,
2:
169
<A NAME="RA29301ST-60B">60b </A>
Anslow AS.
Harwood LM.
Phillips H.
Watkin D.
Tetrahedron: Asymmetry
1991,
2:
997
<A NAME="RA29301ST-60C">60c </A>
Anslow AS.
Harwood LM.
Phillips H.
Watkin D.
Wong LF.
Tetrahedron: Asymmetry
1991,
2:
1343
<A NAME="RA29301ST-60D">60d </A>
Harwood LM.
Lilley IA.
Tetrahedron
Lett.
1993,
34:
537
<A NAME="RA29301ST-60E">60e </A>
Harwood LM.
Manage AC.
Robin S.
Hopes SFG.
Watkin D.
Williams CE.
Synlett
1993,
777
<A NAME="RA29301ST-60F">60f </A>
Harwood LM.
Kitchen LC.
Tetrahedron
Lett.
1993,
34:
6603
<A NAME="RA29301ST-60G">60g </A>
Baldwin JE.
McKenzie T.
Moloney MG.
Synlett
1994,
925
<A NAME="RA29301ST-60H">60h </A>
Anslow AS.
Cox GG.
Harwood LM.
Chem. Heterocycl. Compd.
1995,
31:
1222
<A NAME="RA29301ST-60I">60i </A>
Anslow AS.
Harwood LM.
Lilley IA.
Tetrahedron: Asymmetry
1995,
6:
2465
<A NAME="RA29301ST-60J">60j </A>
Harwood LM.
Lilley IA.
Tetrahedron:
Asymmetry
1995,
6:
1557
<A NAME="RA29301ST-60K">60k </A>
Alker D.
Harwood LM.
Williams CE.
Tetrahedron
1997,
53:
12671
<A NAME="RA29301ST-60L">60l </A>
Harwood LM.
Robertson SM.
Chem. Commun.
1998,
2641
<A NAME="RA29301ST-61">61 </A>
Chinchilla R.
Falvello LR.
Galindo N.
Nájera C.
Eur. J. Org. Chem.
2001,
3133
<A NAME="RA29301ST-62">62 </A>
Stewart JJP.
J. Comput. Chem.
1989,
10:
209
<A NAME="RA29301ST-63">63 </A>
MOPAC: CS Chem3D 45, CambridgeSoft
Corporation.
<A NAME="RA29301ST-64">64 </A>
Paquet A.
Can.
J. Chem.
1982,
60:
976
<A NAME="RA29301ST-65">65 </A>
Lapatsanis L.
Milias G.
Froussios K.
Kolovos M.
Synthesis
1983,
671
<A NAME="RA29301ST-66">66 </A>
Chinchilla R,
Dodsworth DJ,
Nájera C, and
Yus M. inventors; ES P 802134.
<A NAME="RA29301ST-67">67 </A> A big excess of these reagents has
to be used:
Dendrinos KG.
Kalivretenos AG.
J. Chem. Soc., Perkin Trans. 1
1988,
1463
<A NAME="RA29301ST-68">68 </A> The preparation of this reagent
requires a O -silylation-polymerization
(ROMP)-desilylation sequence:
Barret AGM.
Cramp SM.
Roberts RS.
Zecri FJ.
Org.
Lett.
2000,
2:
261
<A NAME="RA29301ST-69A">69a </A>
Chinchilla R,
Dodsworth DJ,
Nájera C,
Soriano JM, and
Yus M. inventors; ES P 00101169.
<A NAME="RA29301ST-69B">69b </A>
Chinchilla R.
Dodsworth DJ.
Nájera C.
Soriano JM.
Tetrahedron Lett.
2001,
42:
7579
Other polymeric HOSu from poly(ethylene-alt -maleic anhydride) cross-linked with
diamines has been used for the isolation of polymeric esters:
<A NAME="RA29301ST-70A">70a </A>
Fridkin M.
Patchornik A.
Katchalski E.
Biochemistry
1972,
11:
466
<A NAME="RA29301ST-70B">70b </A>
Andreev SM.
Tsiryapkin VA.
Samoilova NA.
Mironova NV.
Davidovich YA.
Rogozhin SV.
Synthesis
1977,
303
<A NAME="RA29301ST-70C">70c </A>
Adamczyk M.
Fishpaugh JR.
Mattingly PG.
Biorg. Med. Chem. Lett.
1999,
9:
217
<A NAME="RA29301ST-70D">70d </A>
Adamczyk M.
Fishpaugh JR.
Mattingly PG.
Tetrahedron Lett.
1999,
40:
463
<A NAME="RA29301ST-71">71 </A>
Chinchilla R.
Dodsworth DJ.
Nájera C.
Soriano JM.
Tetrahedron
Lett.
2001,
42:
4487
<A NAME="RA29301ST-72">72 </A>
Van der Auwera C.
Van Damme S.
Anteunis MJO.
Int. J. Pept. Protein Res.
1987,
29:
464
<A NAME="RA29301ST-73">73 </A>
Soriano, J. M. manuscript in preparation.
<A NAME="RA29301ST-74">74 </A>
Chinchilla R.
Dodsworth DJ.
Nájera C.
Soriano JM.
Tetrahedron
Lett.
2000,
41:
2463
<A NAME="RA29301ST-75">75 </A>
Kalir R.
Warshawsky A.
Fridkin M.
Patchornik A.
Eur. J. Biochem.
1975,
59:
55
The pyridinium N -oxide
structure of compound 86 (HOTT) was determined
by Garner et al. by X-ray diffraction analysis,76a who
synthesized HOTT by using phosgene for the preparation of the chlorouronium
salt76a and used this reagent for the preparation of
hindered Barton esters:
<A NAME="RA29301ST-76A">76a </A>
Garner P.
Anderson JT.
Dey S.
Youngs WJ.
Galat K.
J.
Org. Chem.
1998,
63:
5732
<A NAME="RA29301ST-76B">76b </A>
Takasu K.
Mizutani S.
Noguchi M.
Makita K.
Ihara M.
Org.
Lett.
1999,
1:
391
<A NAME="RA29301ST-76C">76c </A>
Garner P.
Anderson T.
Org. Lett.
1999,
1:
1057
<A NAME="RA29301ST-77A">77a </A>
Bailén MA.
Chinchilla R.
Dodsworth DJ.
Nájera C.
Soriano JM.
Yus M. In Peptides 1998 Proceedings of the 25th European
Peptide Symposium
Bajusz S.
Hudecz F.
Akadémiai
Kiadó;
Budapest:
1999.
p.172
<A NAME="RA29301ST-77B">77b </A>
Bailén MA.
Chinchilla R.
Dodsworth DJ.
Nájera C.
J.
Org. Chem.
1999,
64:
8936
<A NAME="RA29301ST-78">78 </A>
Williams MW.
Young GT.
J. Chem. Soc.
1963,
881
<A NAME="RA29301ST-79">79 </A>
Chen S.
Xu J.
Tetrahedron Lett.
1992,
33:
647
<A NAME="RA29301ST-80A">80a </A>
Carpino LA.
El-Faham A.
Minor CA.
Albericio F.
J.
Chem. Soc., Chem. Commun.
1994,
201
<A NAME="RA29301ST-80B">80b </A>
Carpino LA.
El-Faham A.
J. Am.
Chem. Soc.
1995,
117:
5401
<A NAME="RA29301ST-81A">81a </A>
Bailén MA,
Chinchilla R,
Dodsworth DJ,
Nájera C, and
Yus M. inventors; ES P 200002651.
<A NAME="RA29301ST-81B">81b </A>
Albericio F.
Bailén MA.
Chinchilla R.
Dodsworth DJ.
Nájera C.
Tetrahedron
2001,
57:
9607
<A NAME="RA29301ST-82">82 </A>
Di Fenza A.
Tancredi M.
Galoppini C.
Rovero P.
Tetrahedron Lett.
1998,
39:
8529
<A NAME="RA29301ST-83">83 </A>
Kovacs J.
Kim S.
Holleran E.
Gorycki P.
J. Org. Chem.
1985,
50:
1497
<A NAME="RA29301ST-84">84 </A>
Bailén MA.
Chinchilla R.
Dodsworth DJ.
Nájera C.
Tetrahedron
Lett.
2000,
41:
9809
<A NAME="RA29301ST-85">85 </A>
Bailén MA.
Chinchilla R.
Dodsworth DJ.
Nájera C.
Tetrahedron
Lett.
2001,
42:
5013
<A NAME="RA29301ST-86A">86a </A>
Stula EF.
Krauss WC.
Toxicol. Appl. Pharmacol.
1977,
41:
35
<A NAME="RA29301ST-86B">86b </A>
Cross S.
Moisand C.
Tollon Y.
Ann. Pharm.
Fr.
1972,
30:
585
<A NAME="RA29301ST-87A">87a </A>
Akaji A.
Kuriyama N.
Kimura T.
Fujiwara Y.
Kiso Y.
Tetrahedron Lett.
1992,
33:
3177
<A NAME="RA29301ST-87B">87b </A>
Kiso Y.
Kimura T.
Fujiwara Y.
Sakikawa H.
Akaji A.
Chem.
Pharm. Bull.
1990,
38:
270