RSS-Feed abonnieren
DOI: 10.1055/s-2002-28505
Enantioselective Allyltitanation. Synthesis of (-)-Slaframine
Publikationsverlauf
Publikationsdatum:
14. Mai 2002 (online)

Abstract
An enantioselective synthesis of the indolizidine alkaloid (-)-slaframine from aldehyde 1 is reported. The stereogenic centers at C-1 and C-8a are introduced by an enantioselective allyltitanation and a Mitsunobu reaction. Reductive double cyclization of the acyclic compound (-)-10 affords the bicyclic skeleton of (-)-slaframine.
Key words
allyl complexes - titanium - Mitsunobu reaction - indolizidine - slaframine
- 1a 
             
            Hoffmann RW. Angew. Chem., Int. Ed. Engl. 1982, 21: 555
- 1b 
             
            Yamamoto Y.Maruyama K. Heterocycles 1982, 18: 357
- 1c 
             
            Hoffmann R. W. Angew. Chem., Int. Ed. Engl. 1987, 26: 489
- 1d 
             
            Hoppe D. Angew. Chem., Int. Ed. Engl. 1984, 23: 932
- 1e 
             
            Mulzer J.Kattner L.Strecker AR.Schröder C.Buschmann J.Lehmann C.Luger P. J. Am. Chem. Soc. 1991, 113: 4218
- For reviews see:
- 2a 
             
            Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207
- 2b 
             
            Roush WR. In Comprehensive Organic Chemistry Vol. 2:Trost BM. Pergamon Press; Oxford: 1991. p.1-53
- 2c 
             
            Roush WR. In Houben-Weyl: Methods of Organic Chemistry Vol. E21b:Helmchen G.Hoffmann RW.Mulzer J.Schaumann E. Thieme; Stuttgart: 1995. p.1410-1486
- For reviews see:
- 3a 
             
            Marshall JA. Chem. Rev. 1996, 96: 31
- 3b 
             
            Thomas EJ. In Houben-Weyl: Methods of Organic Chemistry Vol. E21b:Helmchen G.Hoffmann RW.Mulzer J.Schaumann E. Thieme; Stuttgart: 1995. p.1508-1540
- 4 For a review see:  
            Thomas EJ. In Houben-Weyl: Methods of Chemistry Vol. E21b:Helmchen G.Hoffmann RW.Mulzer J.Schaumann E. Thieme; Stuttgart: 1995. p.1491-1507Reference Ris Wihthout Link
- 5 
             
            Hafner A.Duthaler RO.Marti R.Rihs G.Rothe-Streit P.Schwarzenbach F. J. Am. Chem. Soc. 1992, 114: 2321
- 6a 
             
            Rainey DP.Smalley EB.Crump MH.Strong FM. Nature (London) 1965, 205: 203
- 6b 
             
            Aust SD.Broquist HP. Nature (London) 1965, 205: 203
- 7a 
             
            Byers JH.Broquist HP. J. Dairy. Sci. 1960, 43: 873
- 7b 
             
            Byers JH.Broquist HP. J. Dairy. Sci. 1961, 44: 1179
- For general reviews see:
- 8a 
             
            Broquist HP. Annu. Rev. Nutr. 1985, 5: 391-409
- 8b 
             
            Howard AS.Michael JP. In The Alkaloids Vol. 28:Brossi A. Academic Press; New York: 1986. p.183-308
- 8c 
             
            Elbein AD.Molyneux RJ. In Alkaloids: Chemical and Biological Perspectives Vol. 5:Pelletier SW. Wiley; New York: 1987. p.1-54
- 8d 
             
            Broquist HP.Snyder JJ. In Microbial Toxins Vol. 7:Ajl SJ.Kadis S.Montie TC. Academic Press; New York: 1971. p.317
- 8e 
             
            Molyneux RJ.James LF. In Mycotoxins and PhytoalexinsSarma RP.Salunkhe DK. CRC Press; Boca Raton FL: 1991. p.637-656
- 9 
             
            Guengerich FP.Aust SD. Mol. Pharmacol. 1977, 13: 185
- 10 General review:  
            Croom WJ.Hagler WM.Froetschel MA.Johnson AD. J. Anim. Sci. 1995, 73: 1499
- 11a 
             
            Froetschel MA.Amos HE.Evans JJ.Croom WJ.Hagler WM. J. Anim. Sci. 1989, 76: 827
- 11b 
             
            Jacques K.Harmon DL.Cromm WJ.Hagler WM. J. Dairy. Sci. 1989, 72: 443
- 12a 
             
            Aust SD. Biochem. Pharmacol. 1969, 18: 929
- 12b 
             
            Aust SD. Biochem. Pharmacol. 1970, 19: 427
- 13 
             
            Gardiner RA.Rinehart KL.Snyder JJ.Broquist HP. J. Am. Chem. Soc. 1968, 90: 5639 ; and references cited therein
- 14a 
             
            Guengerich FP.Broquist HP. Bioorganic Chemistry Vol. 2:van Tamelen EE. Academic Press; New York: 1978. Chap. 4.
- 14b 
             
            Clevenstine EC.Broquist HP.Harris TM. Biochemistry 1979, 18: 3659
- 14c 
             
            Clevenstine EC.Walter P.Harris TM.Broquist HP. Biochemistry 1979, 18: 3663
- 14d 
             
            Schneider MJ.Ungemach FS.Broquist HP.Harris TM. J. Am. Chem. Soc. 1982, 104: 6863
- 14e 
             
            Harris CM.Schneider MJ.Ungemach FS.Hill JE.Harris TM. J. Am. Chem. Soc. 1988, 110: 940
- 15a 
             
            Cartwright D.Gardiner RA.Rinehart KL. J. Am. Chem. Soc. 1970, 92: 7615
- 15b 
             
            Gensler WJ.Hu MW. J. Org. Chem. 1973, 38: 3848
- 15c 
             
            Gobao RA.Bremmer ML.Weinreb SM. J. Am. Chem. Soc. 1982, 104: 7065
- 15d 
             
            Schneider MJ.Harris TM. J. Org. Chem. 1984, 49: 3681
- 15e 
             
            Dartmann M.Flitsch W.Krebs B.Pandl K.Westfechtel A. Liebigs Ann. Chem. 1988, 695
- 15f 
             
            Shono T.Matsumura Y.Katoh S.Takeuchi K.Sasaki K.Kamada T.Shimizu R. J. Am. Chem. Soc. 1990, 112: 2368
- 15g 
             
            Wasserman HH.Vu CB. Tetrahedron Lett. 1994, 35: 9779
- 16a 
             
            Choi J.-R.Han S.Cha JK. Tetrahedron Lett. 1991, 32: 6469
- 16b 
             
            Pearson WH.Bergmeier SC. J. Org. Chem. 1991, 56: 1976
- 16c 
             
            Pearson WH.Bergmeier SC.Williams JP. J. Org. Chem. 1992, 57: 3977
- 16d 
             
            Knapp S.Gibson FS. J. Org. Chem. 1992, 57: 4802
- 16e 
             
            Sibi MP.Christensen JW.Li B.Renhowe PA. J. Org. Chem. 1992, 57: 4329
- 16f 
             
            Knight DW.Sibley AW. Tetrahedron Lett. 1993, 34: 6607
- 16g 
             
            Hua DH.Park J.-G.Katsuhira T.Bharathi SN. J. Org. Chem. 1993, 58: 2144
- 16h 
             
            Gmeiner P.Junge D. J. Org. Chem. 1995, 60: 3910
- 16i 
             
            Szeto P.Lathbury DC.Gallagher T. Tetrahedron Lett. 1995, 36: 6957
- 16j 
             
            Knight DW.Sibley AW. J. Chem. Soc., Perkin Trans. 1 1997, 2179
- 16k 
             
            Sibi MP.Christensen JW. J. Org. Chem. 1999, 64: 6434
- 16l 
             
            Comins DL.Fulp AB. Org. Lett. 1999, 1: 1941
- 16m 
             
            Carretero JC.Arrayas RG. Synlett 1999, 49
- 16n 
             
            Pourashraf M.Delair P.Rasmussen MO.Greene AE. J. Org. Chem. 2000, 65: 6966
- 17 
             
            Feng X.Edstrom E. Tetrahedron: Asymmetry 1999, 10: 99
- 18 For a study on the hydroboration of homoallylic alcohols see:  
            Jung ME.Karama U. Tetrahedron Lett. 1999, 40: 7907
- 22 
             
            Groutas WC.Felker D. Synthesis 1980, 861
References
The direct hydroboration of alcohol (+)-2 without silylation of the homoallylic alcohol function (BH3·THF then H2O2, NaOH) led to the formation of 5 and 5′ with an overall yield of 50% and a 60/40 ratio of 5/5′. See ref. [18]
20Compound (+)-11′ was synthesized according to a strategy similar to the one used for obtaining (+)-11 However the deprotection of the PMP group by using CAN produced the decomposition of 11′.
Scheme 4
(-)-Slaframine was transformed into the more stable N-acetylslaframine (Ac2O pyridine): [α]D 20 -13.3 (c 0.8, EtOH) {lit. [16c] [α]D 20 -11.2 (c 1.45, EtOH)}; mp 138-140 °C (lit. [16c] mp 139-141 °C); IR (CHCl3): 3300, 1730, 1650, 1545, 1440 cm-1; 1H NMR (CDCl3, 300 MHz) δ = 6.62 (br m, 1 H), 5.25 (ddd, 1 H, J = 7.4, 4.8, 2.2 Hz), 4.21 (dt, 1 H J = 8.5, 2.9 Hz), 3.14-3.02 (m, 2 H), 2.29 (m, 1 H), 2.19 (dd, 1 H, J = 11.4, 2.6 Hz), 2.08 (s, 3 H), 2.00 (s, 3 H), 2.07-1.87 (m, 2 H), 1.81 (m, 1 H), 1.65-1.56 (m, 2 H), 1.48 (m, 1 H); 13C NMR (CDCl3, 75 MHz) δ = 170.5 (s), 169.3 (s), 74.4 (d), 67.4 (d), 57.4 (t), 52.9 (t), 43.6 (d), 30.3 (t), 28.0 (t), 23.2 (q), 21.0 (q), 20.3 (t). The physical and spectral data are identical to those reported. [16c] [n]
 
    