References
<A NAME="RC01002SS-1A">1a </A>
Hoffmann RW.
Angew. Chem., Int. Ed. Engl.
1982,
21:
555
<A NAME="RC01002SS-1B">1b </A>
Yamamoto Y.
Maruyama K.
Heterocycles
1982,
18:
357
<A NAME="RC01002SS-1C">1c </A>
Hoffmann R.
W. Angew. Chem., Int. Ed. Engl.
1987,
26:
489
<A NAME="RC01002SS-1D">1d </A>
Hoppe D.
Angew. Chem., Int. Ed. Engl.
1984,
23:
932
<A NAME="RC01002SS-1E">1e </A>
Mulzer J.
Kattner L.
Strecker AR.
Schröder C.
Buschmann J.
Lehmann C.
Luger P.
J. Am. Chem. Soc.
1991,
113:
4218
For reviews see:
<A NAME="RC01002SS-2A">2a </A>
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
<A NAME="RC01002SS-2B">2b </A>
Roush WR. In
Comprehensive Organic Chemistry
Vol. 2:
Trost BM.
Pergamon Press;
Oxford:
1991.
p.1-53
<A NAME="RC01002SS-2C">2c </A>
Roush WR. In
Houben-Weyl: Methods of Organic Chemistry
Vol. E21b:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.1410-1486
For reviews see:
<A NAME="RC01002SS-3A">3a </A>
Marshall JA.
Chem. Rev.
1996,
96:
31
<A NAME="RC01002SS-3B">3b </A>
Thomas EJ. In
Houben-Weyl: Methods of Organic Chemistry
Vol. E21b:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.1508-1540
<A NAME="RC01002SS-4">4 </A> For a review see:
Thomas EJ. In
Houben-Weyl: Methods of Chemistry
Vol. E21b:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.1491-1507
<A NAME="RC01002SS-5">5 </A>
Hafner A.
Duthaler RO.
Marti R.
Rihs G.
Rothe-Streit P.
Schwarzenbach F.
J. Am. Chem. Soc.
1992,
114:
2321
<A NAME="RC01002SS-6A">6a </A>
Rainey DP.
Smalley EB.
Crump MH.
Strong FM.
Nature (London)
1965,
205:
203
<A NAME="RC01002SS-6B">6b </A>
Aust SD.
Broquist HP.
Nature (London)
1965,
205:
203
<A NAME="RC01002SS-7A">7a </A>
Byers JH.
Broquist HP.
J. Dairy. Sci.
1960,
43:
873
<A NAME="RC01002SS-7B">7b </A>
Byers JH.
Broquist HP.
J. Dairy. Sci.
1961,
44:
1179
For general reviews see:
<A NAME="RC01002SS-8A">8a </A>
Broquist HP.
Annu. Rev. Nutr.
1985,
5:
391-409
<A NAME="RC01002SS-8B">8b </A>
Howard AS.
Michael JP. In
The Alkaloids
Vol. 28:
Brossi A.
Academic Press;
New York:
1986.
p.183-308
<A NAME="RC01002SS-8C">8c </A>
Elbein AD.
Molyneux RJ. In
Alkaloids: Chemical and Biological Perspectives
Vol. 5:
Pelletier SW.
Wiley;
New York:
1987.
p.1-54
<A NAME="RC01002SS-8D">8d </A>
Broquist HP.
Snyder JJ. In
Microbial Toxins
Vol. 7:
Ajl SJ.
Kadis S.
Montie TC.
Academic Press;
New York:
1971.
p.317
<A NAME="RC01002SS-8E">8e </A>
Molyneux RJ.
James LF. In
Mycotoxins and Phytoalexins
Sarma RP.
Salunkhe DK.
CRC Press;
Boca Raton FL:
1991.
p.637-656
<A NAME="RC01002SS-9">9 </A>
Guengerich FP.
Aust SD.
Mol. Pharmacol.
1977,
13:
185
<A NAME="RC01002SS-10">10 </A> General review:
Croom WJ.
Hagler WM.
Froetschel MA.
Johnson AD.
J. Anim. Sci.
1995,
73:
1499
<A NAME="RC01002SS-11A">11a </A>
Froetschel MA.
Amos HE.
Evans JJ.
Croom WJ.
Hagler WM.
J. Anim. Sci.
1989,
76:
827
<A NAME="RC01002SS-11B">11b </A>
Jacques K.
Harmon DL.
Cromm WJ.
Hagler WM.
J. Dairy. Sci.
1989,
72:
443
<A NAME="RC01002SS-12A">12a </A>
Aust SD.
Biochem. Pharmacol.
1969,
18:
929
<A NAME="RC01002SS-12B">12b </A>
Aust SD.
Biochem. Pharmacol.
1970,
19:
427
<A NAME="RC01002SS-13">13 </A>
Gardiner RA.
Rinehart KL.
Snyder JJ.
Broquist HP.
J. Am. Chem. Soc.
1968,
90:
5639 ; and references cited therein
<A NAME="RC01002SS-14A">14a </A>
Guengerich FP.
Broquist HP.
Bioorganic Chemistry
Vol. 2:
van Tamelen EE.
Academic Press;
New York:
1978.
Chap. 4.
<A NAME="RC01002SS-14B">14b </A>
Clevenstine EC.
Broquist HP.
Harris TM.
Biochemistry
1979,
18:
3659
<A NAME="RC01002SS-14C">14c </A>
Clevenstine EC.
Walter P.
Harris TM.
Broquist HP.
Biochemistry
1979,
18:
3663
<A NAME="RC01002SS-14D">14d </A>
Schneider MJ.
Ungemach FS.
Broquist HP.
Harris TM.
J. Am. Chem. Soc.
1982,
104:
6863
<A NAME="RC01002SS-14E">14e </A>
Harris CM.
Schneider MJ.
Ungemach FS.
Hill JE.
Harris TM.
J. Am. Chem. Soc.
1988,
110:
940
<A NAME="RC01002SS-15A">15a </A>
Cartwright D.
Gardiner RA.
Rinehart KL.
J. Am. Chem. Soc.
1970,
92:
7615
<A NAME="RC01002SS-15B">15b </A>
Gensler WJ.
Hu MW.
J. Org. Chem.
1973,
38:
3848
<A NAME="RC01002SS-15C">15c </A>
Gobao RA.
Bremmer ML.
Weinreb SM.
J. Am. Chem. Soc.
1982,
104:
7065
<A NAME="RC01002SS-15D">15d </A>
Schneider MJ.
Harris TM.
J. Org. Chem.
1984,
49:
3681
<A NAME="RC01002SS-15E">15e </A>
Dartmann M.
Flitsch W.
Krebs B.
Pandl K.
Westfechtel A.
Liebigs Ann. Chem.
1988,
695
<A NAME="RC01002SS-15F">15f </A>
Shono T.
Matsumura Y.
Katoh S.
Takeuchi K.
Sasaki K.
Kamada T.
Shimizu R.
J. Am. Chem. Soc.
1990,
112:
2368
<A NAME="RC01002SS-15G">15g </A>
Wasserman HH.
Vu CB.
Tetrahedron Lett.
1994,
35:
9779
<A NAME="RC01002SS-16A">16a </A>
Choi J.-R.
Han S.
Cha JK.
Tetrahedron Lett.
1991,
32:
6469
<A NAME="RC01002SS-16B">16b </A>
Pearson WH.
Bergmeier SC.
J. Org. Chem.
1991,
56:
1976
<A NAME="RC01002SS-16C">16c </A>
Pearson WH.
Bergmeier SC.
Williams JP.
J. Org. Chem.
1992,
57:
3977
<A NAME="RC01002SS-16D">16d </A>
Knapp S.
Gibson FS.
J. Org. Chem.
1992,
57:
4802
<A NAME="RC01002SS-16E">16e </A>
Sibi MP.
Christensen JW.
Li B.
Renhowe PA.
J. Org. Chem.
1992,
57:
4329
<A NAME="RC01002SS-16F">16f </A>
Knight DW.
Sibley AW.
Tetrahedron Lett.
1993,
34:
6607
<A NAME="RC01002SS-16G">16g </A>
Hua DH.
Park J.-G.
Katsuhira T.
Bharathi SN.
J. Org. Chem.
1993,
58:
2144
<A NAME="RC01002SS-16H">16h </A>
Gmeiner P.
Junge D.
J. Org. Chem.
1995,
60:
3910
<A NAME="RC01002SS-16I">16i </A>
Szeto P.
Lathbury DC.
Gallagher T.
Tetrahedron Lett.
1995,
36:
6957
<A NAME="RC01002SS-16J">16j </A>
Knight DW.
Sibley AW.
J. Chem. Soc., Perkin Trans. 1
1997,
2179
<A NAME="RC01002SS-16K">16k </A>
Sibi MP.
Christensen JW.
J. Org. Chem.
1999,
64:
6434
<A NAME="RC01002SS-16L">16l </A>
Comins DL.
Fulp AB.
Org. Lett.
1999,
1:
1941
<A NAME="RC01002SS-16M">16m </A>
Carretero JC.
Arrayas RG.
Synlett
1999,
49
<A NAME="RC01002SS-16N">16n </A>
Pourashraf M.
Delair P.
Rasmussen MO.
Greene AE.
J. Org. Chem.
2000,
65:
6966
<A NAME="RC01002SS-17">17 </A>
Feng X.
Edstrom E.
Tetrahedron: Asymmetry
1999,
10:
99
<A NAME="RC01002SS-18">18 </A> For a study on the hydroboration of homoallylic alcohols see:
Jung ME.
Karama U.
Tetrahedron Lett.
1999,
40:
7907
<A NAME="RC01002SS-19">19 </A>
The direct hydroboration of alcohol (+)-2 without silylation of the homoallylic alcohol function (BH3 ·THF then H2 O2 , NaOH) led to the formation of 5 and 5 ′ with an overall yield of 50% and a 60/40 ratio of 5 /5 ′. See ref.
[18 ]
<A NAME="RC01002SS-20">20 </A>
Compound (+)-11 ′ was synthesized according to a strategy similar to the one used for obtaining (+)-11 However the deprotection of the PMP group by using CAN produced the decomposition
of 11 ′.
Scheme 4
<A NAME="RC01002SS-21">21 </A>
(-)-Slaframine was transformed into the more stable N -acetylslaframine (Ac2 O pyridine): [α]D
20 -13.3 (c 0.8, EtOH) {lit.
[16c ]
[α]D
20 -11.2 (c 1.45, EtOH)}; mp 138-140 °C (lit.
[16c ]
mp 139-141 °C); IR (CHCl3 ): 3300, 1730, 1650, 1545, 1440 cm-1 ; 1 H NMR (CDCl3 , 300 MHz) δ = 6.62 (br m, 1 H), 5.25 (ddd, 1 H, J = 7.4, 4.8, 2.2 Hz), 4.21 (dt, 1 H J = 8.5, 2.9 Hz), 3.14-3.02 (m, 2 H), 2.29 (m, 1 H), 2.19 (dd, 1 H, J = 11.4, 2.6 Hz), 2.08 (s, 3 H), 2.00 (s, 3 H), 2.07-1.87 (m, 2 H), 1.81 (m, 1 H),
1.65-1.56 (m, 2 H), 1.48 (m, 1 H); 13 C NMR (CDCl3 , 75 MHz) δ = 170.5 (s), 169.3 (s), 74.4 (d), 67.4 (d), 57.4 (t), 52.9 (t), 43.6 (d), 30.3 (t),
28.0 (t), 23.2 (q), 21.0 (q), 20.3 (t). The physical and spectral data are identical
to those reported.
[16c ]
[n ]
<A NAME="RC01002SS-22">22 </A>
Groutas WC.
Felker D.
Synthesis
1980,
861