Synthesis 2022; 54(17): 3785-3792
DOI: 10.1055/s-0041-1737346
special topic
Special Issue in memory of Prof. Ferenc Fülöp

Fluorinated Olefinic Lactams: The Case of Amino Acids – Preparation and Mechanistic Studies

Katarzyna Salamon-Krokosz
,
Mateusz Gołdyn
,
Tomasz Siodła
,
Elżbieta Bartoszak-Adamska
,
Henryk Koroniak
,
Katarzyna Koroniak-Szejn
The work was supported by the European Union through the European Social Fund under the Operational Program Knowledge Education Development (POWR.03.02.00-00-I020/17 (KSK) and POWR.03.02.00-00-I026/16 (MG)), as well as the National Science Center (UMO-2017/26/M/ST5/00437).


Abstract

Herein, we report the synthesis of analogues of amino acids with a monofluorovinyl moiety. Interestingly, we have found that cyclization of the obtained products proceeds easily in all cases. The cyclization process has not previously been observed at this reaction stage, and such fluorinated lactams derived from phenylalanine, valine, alanine have not been described before.

Supporting Information



Publication History

Received: 01 November 2021

Accepted after revision: 11 January 2022

Article published online:
01 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Choudhary A, Raines RT. ChemBioChem 2011; 12: 1801
  • 2 Dalvit C, Ko SY, Vulpetti A. J. Fluorine Chem. 2013; 152: 129
  • 3 Champagne PA, Desroches J, Paquin JF. Synthesis 2015; 47: 306
  • 4 Deepa, Yadav GD, Chaudhary P, Aalam MJ, Meena DR, Singh S. Chirality 2020; 32: 64
  • 5 Wernik M, Poechlauer P, Schmoelzer C, Kappe CO. Org. Process Res. Dev. 2019; 23: 1359
  • 6 Seo WD, Curtis-Long MJ, Kim JH, Park JK, Park KM, Park KH. Synlett 2005; 2289
  • 7 Kaźmierczak M, Koroniak H. J. Fluorine Chem. 2012; 139: 23
  • 8 Shi M, Wang L, Zhang L, Wang K, Zhang H, Wang Y, Li C, Han W. Nucleosides, Nucleotides and Nucleic Acids 2020; 40: 96
  • 9 Peiretti F, Montanari R, Capelli D, Bonardo B, Colson C, Amri EZ, Grimaldi M, Balaguer P, Ito K, Roeder RG, Pochetti G, Brunel JM. J. Med. Chem. 2020; 63: 13124
  • 10 Maheswara Rao BL, Nowshuddin S, Jha A, Divi MK, Rao MN. A. Synth. Commun. 2017; 47: 2127
  • 11 Reddy Guduru SK, Chamakuri S, Raji IO, MacKenzie KR, Santini C, Young DW. J. Org. Chem. 2018; 83: 11777
  • 12 Ivkovic J, Lembacher-Fadum C, Breinbauer R. Org. Biomol. Chem. 2015; 13: 10456
  • 13 Ghosh AK, Shin D, Downs D, Koelsch G, Lin X, Ermolieff J, Tang J. J. Am. Chem. Soc. 2000; 122: 3522
  • 14 Grison C, Genève S, Halbin E, Coutrot P. Tetrahedron 2001; 57: 4903
  • 15 Takahashi O, Kirikoshi R. Comput. Sci. Discovery 2014; 7
  • 16 Choi HJ, Cui M, Li DY, Song HO, Kim HS, Park H. Bioorg. Med. Chem. Lett. 2013; 23: 1293
  • 17 Pelkey ET, Pelkey SJ, Greger JG. Reactions of 3-Pyrrolin-2-ones, 1st ed., Vol. 128. Elsevier Inc; Amsterdam: 2019
  • 18 Kano T, Shirozu F, Maruoka K. Org. Lett. 2014; 16: 1530
  • 19 Chenna BC, Li L, Mellott DM, Zhai X, Siqueira-Neto JL, Calvet Alvarez CC, Bernatchez JA, Desormeaux E, Alvarez Hernandez E, Gomez J, McKerrow JH, Cruz-Reyes J, Meek TD. J. Med. Chem. 2020; 63: 3298
  • 20 Suzuki T, Nagasawa T, Enomoto M, Kuwahara S. Tetrahedron 2015; 71: 1992
  • 21 Boukouvalas J, Xiao Y, Cheng YX, Loach RP. Synlett 2007; 3198
  • 22 Zanardi F, Battistini L, Rassu G, Cornia M, Casiraghi G. J. Chem. Soc., Perkin Trans. 1 1995; 2471
  • 23 Courcambeck J, Bihel F, de Michelis C, Quéléver G, Kraus JL. J. Chem. Soc., Perkin Trans. 1 2001; 1421
  • 24 DiRocco DA, Oberg KM, Dalton DM, Rovis T. J. Am. Chem. Soc. 2009; 131: 10872
  • 25 Grison C, Coutrot P, Poincare H, Nancy I. Tetrahedron Lett. 2001; 42: 3831
  • 26 Oguz, U.; McLaughlin, M. L.; Fronczek, F. R. CCDC 1401856: Experimental Crystal Structure Determination, 2015; DOI: DOI: 10.5517/cc1j1r5h
  • 27 Tomasi J, Mennucci B, Cammi R. Chem. Rev. 2005; 105: 2999
  • 28 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 09, Revision E.01. Gaussian, Inc; Wallingford CT: 2013
  • 29 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
  • 30 Hariharan PC, Pople JA. Theor. Chim. Acta 1973; 28: 213
  • 31 Fukui K. Acc. Chem. Res. 1981; 14: 363
  • 32 Fukui K. J. Phys. Chem. 1970; 74: 4161
  • 33 Miertuš S, Scrocco E, Tomasi J. Chem. Phys. 1981; 55: 117
  • 34 Miertuš S, Tomasi J. Chem. Phys. 1982; 65: 239
  • 35 Rigaku Oxford Diffraction (2021), CrysAlisPro Software system, version 1.171.41.102a. Rigaku Corporation; Wroclaw: 2021
  • 36 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Cryst. 2009; 42: 339
  • 37 Sheldrick GM. Acta Crystallogr., Sect. A: Foundations and Advances 2015; 71: 3
  • 38 Sheldrick GM. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015; 71: 3