Synthesis 2020; 52(17): 2521-2527
DOI: 10.1055/s-0040-1707400
psp
© Georg Thieme Verlag Stuttgart · New York

A Facile Synthesis of Ligands for the von Hippel–Lindau E3 Ligase

a   Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany   eMail: guetschow@uni-bonn.de
,
Sabine Anna Voell
a   Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany   eMail: guetschow@uni-bonn.de
,
Lan Phuong Vu
a   Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany   eMail: guetschow@uni-bonn.de
,
Aleša Bricelj
b   Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
,
b   Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
,
Gregor Schnakenburg
c   Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
,
a   Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany   eMail: guetschow@uni-bonn.de
› Institutsangaben

I.S. acknowledges funding by the Javna Agencija za Raziskovalno Dejavnost RS [Slovenian Research Agency (ARRS)] through research core funding No. P1-0208.
Weitere Informationen

Publikationsverlauf

Received: 05. März 2020

Accepted after revision: 06. Mai 2020

Publikationsdatum:
27. Mai 2020 (online)


Abstract

The proteolysis-targeting chimeras (PROTACs) have become an integral part of different stages of drug discovery. This growing field, therefore, benefits from advancements in all segments of the design of these compounds. Herein, an efficient and optimized synthetic protocol to various von Hippel-Lindau (VHL) ligands is presented, which enables easy access to multigram quantities of these essential PROTAC building blocks. Moreover, the elaborated synthesis represents a straightforward approach to further explore the chemical space of VHL ligands.

Supporting Information

 
  • References

    • 3a Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, Liu X, Thummuri D, Yuan Y, Wiegand JS, Pei J, Zhang W, Sharma A, McCurdy CR, Kuruvilla VM, Baran N, Ferrando AA, Kim Y, Rogojina A, Houghton PJ, Huang G, Hromas R, Konopleva M, Zheng G, Zhou D. Nat. Med. 2019; 25: 1938
    • 3b Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E, Trainor N, Zollman D, Steurer S, Karolyi-Oezguer J, Riedmueller C, Gmaschitz T, Wachter J, Dank C, Galant M, Sharps B, Rumpel K, Traxler E, Gerstberger T, Schnitzer R, Petermann O, Greb P, Weinstabl H, Bader G, Zoephel A, Weiss-Puxbaum A, Ehrenhöfer-Wölfer K, Wöhrle S, Boehmelt G, Rinnenthal J, Arnhof H, Wiechens N, Wu M.-Y, Owen-Hughes T, Ettmayer P, Pearson M, McConnell DB, Ciulli A. Nat. Chem. Biol. 2019; 15: 672
  • 7 Galdeano C, Gadd MS, Soares P, Scaffidi S, Van Molle I, Birced I, Hewitt S, Dias DM, Ciulli A. J. Med. Chem. 2014; 57: 8657
  • 8 Johnson CN, Adelinet C, Berdini V, Beke L, Bonnet P, Brehmer D, Calo F, Coyle JE, Day PJ, Frederickson M, Freyne EJ. E, Gilissen RA. H. J, Hamlett CC. F, Howard S, Meerpoel L, Mevellec L, McMenamin R, Pasquier E, Patel S, Rees DC, Linders JT. M. ACS Med. Chem. Lett. 2015; 6: 31
  • 9 Buckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL, Smith IE, Miah AH, Harling JD, Crews CM. ACS Chem. Biol. 2015; 10: 1831
  • 10 For the characterization of the O-acyl side product occurring during the coupling of phenol 6d with Boc-Hyp-OH, see Supporting Information.
  • 11 Kaburagi Y, Kishi Y. Org. Lett. 2007; 9: 723
  • 13 The X-ray crystallographic data collection for compounds 14 was performed on a Bruker X8-Kappa ApexII diffractometer at 100(2) K. The diffractometer was equipped with a low-temperature device (Kryoflex I, Bruker AXS) and used Mo-K α radiation (λ = 0.71073 Å). Intensities were measured by fine-slicing ϕ- and ω-scans and corrected for background, polarization, and Lorentz effects. Semiempirical absorption corrections were applied for all data sets by using Bruker’s SADABS program. The structures were solved by direct methods and refined anisotropically by the least-squares procedure implemented in the ShelX-2014/7 program system. Hydrogen atoms were included isotopically using the riding model on the bound carbon atoms. CCDC 1986177 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 14 For the feasible synthesis of aldehyde 4d from 3-bromophenol or 4-bromosalicylic acid, see Supporting Information.
  • 16 Yamazaki Y, Kohno K, Yasui H, Kiso Y, Akamatsu M, Nicholson B, Deyanat-Yazdi G, Neuteboom S, Potts B, Lloyd GK, Hayashi Y. ChemBioChem 2008; 9: 3074