Synthesis 2020; 52(15): 2171-2189
DOI: 10.1055/s-0040-1707114
feature
© Georg Thieme Verlag Stuttgart · New York

A Bond-Weakening Borinate Catalyst that Improves the Scope of the Photoredox α-C–H Alkylation of Alcohols

Kentaro Sakai
,
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: oisaki@mol.f.u-tokyo.ac.jp   Email: kanai@mol.f.u-tokyo.ac.jp
,
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: oisaki@mol.f.u-tokyo.ac.jp   Email: kanai@mol.f.u-tokyo.ac.jp
› Author Affiliations
This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grants [JP19J23157 (JSPS Fellows) (to K. S.), JP18H04239 (Precisely Designed Catalysts with Customized Scaffolding), JP18K06545 (Scientific Research C) (to K.O.), and JP17H06442 (Hybrid Catalysis) (to M.K.)], and the TOBE MAKI Scholarship Foundation (K.S.).
Further Information

Publication History

Received: 14 February 2020

Accepted after revision: 06 April 2020

Publication Date:
12 May 2020 (online)


Dedicated to the late Professor Dieter Enders

Abstract

The development of catalyst-controlled, site-selective C(sp3)–H functionalization reactions is currently a major challenge in organic synthesis. In this paper, a novel bond-weakening catalyst that recognizes the hydroxy group of alcohols through formation of a borate is described. An electron-deficient borinic acid–ethanolamine complex enhances the chemical yield of the α-C–H alkylation of alcohols when used in conjunction with a photoredox catalyst and a hydrogen atom transfer catalyst under irradiation with visible light. This ternary hybrid catalyst system can, for example, be applied to functional-group-enriched­ peptides.

Supporting Information

 
  • References

    • 1a Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1b Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 1c Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546

      For recent reviews on C(sp3)–H functionalization reactions, see:
    • 2a He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 2b Lu Q, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 49
    • 2c Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
    • 2d Xie J, Pan C, Abdukader A, Zhu C. Chem. Soc. Rev. 2014; 43: 5245
    • 2e Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 2f Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
    • 2g Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
    • 2h Chen Z, Rong M.-Y, Nie J, Zhu X.-F, Shi B.-F, Ma J.-A. Chem. Soc. Rev. 2019; 48: 4921
  • 3 Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752

    • For reviews on C(sp3)–H functionalization reactions via the HAT mechanism under irradiation with visible light, see:
    • 4a Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 4b Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
    • 4c Hu X.-Q, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2017; 56: 1960
    • 5a Tanaka H, Sakai K, Kawamura A, Oisaki K, Kanai M. Chem. Commun. 2018; 54: 3215
    • 5b Wakaki T, Sakai K, Enomoto T, Kondo M, Masaoka S, Oisaki K, Kanai M. Chem. Eur. J. 2018; 24: 8051
    • 5c Sakai K, Oisaki K, Kanai M. Adv. Synth. Catal. 2020; 362: 337
    • 5d Kato S, Saga Y, Kojima M, Fuse H, Matsunaga S, Fukatsu A, Kondo M, Masaoka S, Kanai M. J. Am. Chem. Soc. 2017; 139: 2204
    • 5e Fuse H, Kojima M, Mitsunuma H, Kanai M. Org. Lett. 2018; 20: 2042
    • 6a Estes DP, Grills DC, Norton JR. J. Am. Chem. Soc. 2014; 136: 17362
    • 6b Roth JP, Mayer JM. Inorg. Chem. 1999; 38: 2760
    • 6c Wu A, Mayer JM. J. Am. Chem. Soc. 2008; 130: 14745
    • 6d Manner VM, Mayer JM. J. Am. Chem. Soc. 2009; 131: 9874
    • 6e Jonas RT, Stack TD. P. J. Am. Chem. Soc. 1997; 119: 8566
    • 6f Semproni SP, Milsmann C, Chirik PJ. J. Am. Chem. Soc. 2014; 136: 9211
    • 6g Milsmann C, Semproni SP, Chirik PJ. J. Am. Chem. Soc. 2014; 136: 12099
    • 6h Bezdek MJ, Guo S, Chirik PJ. Science 2016; 354: 730
    • 6i Fang H, Ling Z, Lang K, Brothers PJ, de Bruin B, Fu X. Chem. Sci. 2014; 5: 916
    • 6j Miyazaki S, Kojima T, Mayer JM, Fukuzumi S. J. Am. Chem. Soc. 2009; 131: 11615
    • 6k Resa S, Millán A, Fuentes N, Crovetto L, Marcos ML, Lezama L, Choquesillo-Lazarte D, Blanco V, Campaña AG, Cárdenas DJ, Cuerva JM. Dalton Trans. 2019; 48: 2179
    • 7a Spiegel DA, Wiberg KB, Schacherer LN, Medeiros MR, Wood JL. J. Am. Chem. Soc. 2005; 127: 12513
    • 7b Pozzi D, Scanlan EM, Renaud P. J. Am. Chem. Soc. 2005; 127: 14204
    • 7c Chciuk TV, Flowers RA. II. J. Am. Chem. Soc. 2015; 137: 11526
  • 8 Tarantino KT, Miller DC, Callon TA, Knowles RR. J. Am. Chem. Soc. 2015; 137: 6440
    • 9a Jeffrey JL, Terrett JA, MacMillan DW. C. Science 2015; 349: 1532
    • 9b Wan IC (S.), Witte MD, Minnaard AJ. Chem. Commun. 2017; 53: 4926
    • 9c Wang Y, Carder HM, Wendlandt AE. Nature 2020; 578: 403
    • 9d For related discussions on the bond-weakening of alcohols through hydrogen bonding, see: Gawlita E, Lantz M, Paneth P, Bell AF, Tonge PJ, Anderson VE. J. Am. Chem. Soc. 2000; 122: 11660
    • 10a Dimakos V, Su HY, Garrett GE, Taylor MS. J. Am. Chem. Soc. 2019; 141: 5149
    • 10b Dimakos V, Gorelik D, Su HY, Garrett GE, Hughes G, Shibayama H, Taylor MS. Chem. Sci. 2020; 11: 1531
  • 11 Perozzi EF, Martin JC. J. Am. Chem. Soc. 1979; 101: 1591
  • 12 For details, see the Supporting Information.
  • 13 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712

    • For representative examples of quinuclidine acting as a HAT catalyst, see:
    • 14a Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
    • 14b Le C, Liang Y, Evans RW, Li X, MacMillan DW. C. Nature 2017; 547: 79
    • 14c Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2017; 139: 11353
  • 15 Lima F, Sharma UK, Grunenberg L, Saha D, Johannsen S, Sedelmeier J, Van der Eycken EV, Ley SV. Angew. Chem. Int. Ed. 2017; 56: 15136
  • 16 Ishihara K, Yamamoto H. Eur. J. Org. Chem. 1999; 527
    • 17a Farfán N, Castillo D, Joseph-Nathan P, Contreras R, Szetpály Lv. J. Chem. Soc., Perkin Trans. 2 1992; 527
    • 17b Marciasini L, Cacciuttolo B, Vaultier M, Pucheault M. Org. Lett. 2015; 17: 3532
  • 18 Joshi-Pangu A, Lévesque F, Roth HG, Oliver SF, Campeau L.-C, Nicewicz D, DiRocco DA. J. Org. Chem. 2016; 81: 7244
  • 19 Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko NV, Lemmetyinen H. J. Am. Chem. Soc. 2004; 126: 1600
  • 20 Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
  • 21 Yang H.-B, Feceu A, Martin DB. C. ACS Catal. 2019; 9: 5708
  • 22 Mukherjee S, Maji B, Tlahuext-Aca A, Glorius F. J. Am. Chem. Soc. 2016; 138: 16200
  • 23 The C–H alkylation of 2j and 2k without borinate catalyst 6j proceeded in yields that were too low to determine the site-selectivity.
  • 24 Nelsen SF, Hintz PJ. J. Am. Chem. Soc. 1972; 94: 7114
  • 25 Liu W.-Z, Bordwell FG. J. Org. Chem. 1996; 61: 4778
  • 26 The increase in the chemical yield may also partially originate from electrostatic interactions between the anionic borate and the quinuclidinium radical cation. For a related discussion, see: Ye J, Kalvet I, Schoenebeck F, Rovis T. Nat. Chem. 2018; 10: 1037