Synthesis 2020; 52(05): 744-754
DOI: 10.1055/s-0039-1691506
paper
© Georg Thieme Verlag Stuttgart · New York

A Copper(I)-Mediated Tandem Three-Component Synthesis of 5-Allyl-1,2,3-triazoles

Yoona Song
,
Soyun Lee
,
Palash Dutta
,
College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-Gu, Seoul 03760, Republic of Korea   Email: ryuj@ewha.ac.kr
› Author Affiliations
This research was supported by the National Research Foundation of Korea (NRF-2018R1A5A2025286 and NRF-2017M3A9F5029066) with grants funded by the Government of South Korea.
Further Information

Publication History

Received: 18 September 2019

Accepted after revision: 13 November 2019

Publication Date:
25 November 2019 (online)


These authors contributed equally to this work.

Abstract

A copper(I)-mediated tandem three-component reaction using alkynes, azides, allyl iodides, CuI and NaNH2 is developed. The reactions proceed smoothly at room temperature to afford 5-allyl-1,2,3-triazoles, which can be further converted into 1,2,3-triazole-fused tricyclic scaffolds. This method features an efficient one-pot cascade route using commercial alkynes and affords the corresponding 5-allyl-1,2,3-triazoles with high yields and good selectivity under mild reaction conditions.

Supporting Information

 
  • References

  • 1 For a recent review, see: Rotstein BH, Zaretsky S, Rai V, Yudin AK. Chem. Rev. 2014; 114: 8323; and references cited therein
    • 2a Bienaymé H, Hulme C, Oddon G, Schmitt P. Chem. Eur. J. 2000; 6: 3321
    • 2b Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
  • 3 Hulme C, Gore V. Curr. Med. Chem. 2003; 10: 51
    • 4a Kouznetsov VV, Puerto Galvis CE. Tetrahedron 2018; 74: 773
    • 4b Liu Y.-L, Zhou J. Synthesis 2015; 47: 1210
    • 4c Strecker A. Liebigs Ann. Chem. 1850; 75: 27
  • 5 Neochoritis CG, Zhao T, Dömling A. Chem. Rev. 2019; 119: 1970
  • 6 Ziarani GM, Moradi R, Ahmadi T, Lashgar N. RSC Adv. 2018; 8: 12069
  • 7 Alizadeh A, Babaki M, Zohreh N. Tetrahedron 2009; 65: 1704
  • 8 Adib M, Sheibani E, Bijanzadeh HR, Zhu L.-G. Tetrahedron 2008; 64: 10681
    • 9a Morris JC, Chiche J, Grellier C, Lopez M, Bornaghi LF, Maresca A, Supuran CT, Pouyssegur J, Poulsen S.-A. J. Med. Chem. 2011; 54: 6905
    • 9b Malnuit V, Duca M, Manout A, Bougrin K, Benhida R. Synlett 2009; 2123
    • 9c Joubert N, Schinazib RF, Agrofoglio LA. Tetrahedron 2005; 61: 11744
    • 9d Barsoum DN, Brassard CJ, Deeb JH. A, Okashah N, Sreenath K, Simmons JT, Zhu L. Synthesis 2013; 45: 2372
    • 9e Li L, Li R, Zhu A, Zhang G, Zhang L. Synlett 2011; 874
    • 9f Smith NW, Polenz BP, Johnson SB, Dzyuba SV. Tetrahedron Lett. 2010; 51: 550
    • 9g Li L, Zhang GG, Zhu A, Zhang L. J. Org. Chem. 2008; 73: 3630
    • 9h Wu Y, Deng J, Li Y, Chen Q.-Y. Synthesis 2005; 1314
  • 10 Chen Z, Liu Z, Cao G, Li H, Ren H. Adv. Synth. Catal. 2017; 359: 202
  • 11 Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
  • 12 Hakimian S, Cheng-Hakimian A, Anderson GD, Miller JW. Expert Opin. Pharmacother. 2007; 8: 1931
  • 13 Yang Y, Rasmussen BA, Shlaes DM. Pharmacol. Ther. 1999; 83: 141
  • 14 Dheer D, Singh V, Shankar R. Bioorg. Chem. 2017; 71: 30
    • 15a Pieters RJ, Rijkers DT. S, Liskamp RM. J. QSAR Comb. Sci. 2007; 26: 1181
    • 15b Dirks AJ, Cornelissen J, van Delft FL, van Hest JC. M, Nolte RJ. M, Rowan AE, Rutjes F. QSAR Comb. Sci. 2007; 26: 1200
    • 15c Salisbury CM, Cravatt BF. QSAR Comb. Sci. 2007; 26: 1229
    • 15d Baskin JM, Bertozzi CR. QSAR Comb. Sci. 2007; 26: 1211
    • 15e Lutz JF. Angew. Chem. Int. Ed. 2008; 47: 2182
    • 15f Lutz JF, Borner HG. Prog. Polym. Sci. 2008; 33: 1
    • 16a Binder WH, Kluger C. Curr. Org. Chem. 2006; 10: 1791
    • 16b Nandivada H, Jiang XW, Lahann J. Adv. Mater. 2007; 19: 2197
    • 16c Fournier D, Hoogenboom R, Schubert US. Chem. Soc. Rev. 2007; 36: 1369
    • 16d Golas PL, Matyjaszewski K. QSAR Comb. Sci. 2007; 26: 1116
    • 17a Totobenazara J, Burke AJ. Tetrahedron Lett. 2015; 56: 2853
    • 17b Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
    • 17c Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 17d Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249

      For the synthesis of 5-allyl-1,2,3-triazoles, see:
    • 18a Li L, Xing X, Zhang C, Zhu A, Fan X, Chen C, Zhang G. Tetrahedron Lett. 2018; 59: 3563
    • 18b Li L, Ding S, Yang Y, Zhu A, Fan X, Cui M, Chen C, Zhang G. Chem. Eur. J. 2017; 23: 1166
    • 18c Wei F, Zhou T, Ma Y, Tung C.-H, Xu Z. Org. Lett. 2017; 19: 2098
    • 18d Barsoum DN, Okashah N, Zhang X, Zhu L. J. Org. Chem. 2015; 80: 9542
  • 19 Reddy PR, Cui L, Ryu J.-S. RSC Adv. 2018; 8: 2759

    • For recent multicomponent CuAAC reactions, see:
    • 20a Qureshi Z, Kim JY, Bruun T, Lam H, Lautens M. ACS Catal. 2016; 6: 4946
    • 20b Yamamoto K, Bruun T, Kim JY, Zhang L, Lautens M. Org Lett. 2016; 18: 2644
    • 21a Zhu L, Brassard CJ, Zhang X, Guha PM, Clark RJ. Chem. Rec. 2016; 16: 1501
    • 21b Singh MS, Chowdhury S, Koley S. Tetrahedron 2016; 72: 5257
    • 21c Jin L, Tolentino DR, Melaimi M, Bertrand G. Sci. Adv. 2015; 1: e1500304
    • 21d Angell YL, Burgess K. Chem. Soc. Rev. 2007; 36: 1674
    • 21e Bock VD, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2006; 51