Synthesis 2020; 52(15): 2147-2161
DOI: 10.1055/s-0039-1690898
short review
© Georg Thieme Verlag Stuttgart · New York

Manifestation of the β-Silicon Effect in the Reactions of Unsaturated Systems Involving a 1,2-Silyl Shift

Rūdolfs Beļaunieks
,
Mikus Puriņš
,
Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena str. 3, Riga, 1048, Latvia   Email: Maris.Turks@rtu.lv
› Author Affiliations
This work was supported by a grant from Latvian Council of Science (grant No. LZP-2018/1-0315) and doctoral student grant from Riga Technical University (grant No. DOK.MLKF/19).
Further Information

Publication History

Received: 31 January 2020

Accepted after revision: 30 March 2020

Publication Date:
20 April 2020 (online)


Abstract

Many chemical transformations of organosilicon compounds proceed due to the capability of silyl substituents to stabilize a positive charge in its β-position. This short review provides an overview of the present understanding of the β-silicon effect and focusses on the synthetic applications of 1,2-silyl shifts resulting from non-vertical stabilization of alkylcarbenium ions and vinyl cations. The reactions of silicon containing unsaturated starting materials, alkenes, allenes, and alkynes, involving β-silyl group stabilized cationic intermediates, transition metal carbenes, or vinylidene complexes will be discussed.

1 Introduction

2 Origins of the β-Silicon Effect

3 Reactions of Allenylsilanes

4 Reactions of Alkynes

4.1 Propargylsilanes

4.2 Alkynylsilanes

5 Reactions of Alkenes

5.1 Allylsilanes

5.2 Vinylsilanes

6 Conclusions

 
  • References

  • 1 Present address: Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, 1015, Switzerland.
  • 2 Slater JC. J. Chem. Phys. 1964; 41: 3199
  • 3 Gray H. Electrons and Chemical Bonding . W. A. Benjamin; New York: 1964
  • 4 Veszprémi T, Nagy J. J. Organomet. Chem. 1983; 255: 41
  • 5 Allred AL, Rochow EG. J. Inorg. Nucl. Chem. 1958; 5: 269
  • 6 Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R. J. Chem. Soc., Perkin Trans. 2 1987; S1
  • 7 Walsh R. Acc. Chem. Res. 1981; 14: 246
  • 8 Wuts PG. M. Greene’s Protective Groups in Organic Synthesis, 5th ed. Wiley; Hoboken: 2014: 17
  • 9 Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
  • 10 Jones GR, Landais Y. Tetrahedron 1996; 52: 7599
  • 11 Chan TH, Fleming I. Synthesis 1979; 761
  • 12 Brown HC. The Nonclassical Ion Problem . Springer US; Boston: 1977
  • 13 Curtis-Long MJ, Aye Y. Chem. Eur. J. 2009; 15: 5402
  • 14 Knölker H.-J. J. Prakt. Chem. 1997; 339: 304
  • 15 Schmidt A, Knölker H.-J. Synlett 2010; 2207
  • 16 Chabaud L, James P, Landais Y. Eur. J. Org. Chem. 2004; 3173
  • 17 Sommer LH, Whitmore FC. J. Am. Chem. Soc. 1946; 68: 485
  • 18 Sommer LH, Dorfman E, Goldberg GM, Whitmore FC. J. Am. Chem. Soc. 1946; 68: 488
  • 19 Lambert JB. Tetrahedron 1990; 46: 2677
  • 20 Traylor TG, Hanstein W, Berwin HJ, Clinton NA, Brown RS. J. Am. Chem. Soc. 1971; 93: 5715
  • 21 Lambert JB, Wang GT, Finzel RB, Teramura DH. J. Am. Chem. Soc. 1987; 109: 7838
  • 22 Lambert JB, Chelius EC. J. Am. Chem. Soc. 1990; 112: 8120
  • 23 Lambert JB, Liu X. J. Organomet. Chem. 1996; 521: 203
  • 24 Lambert JB, Zhao Y, Emblidge RW, Salvador LA, Liu X, So J.-H, Chelius EC. Acc. Chem. Res. 1999; 32: 183
  • 25 Wierschke SG, Chandrasekhar J, Jorgensen WL. J. Am. Chem. Soc. 1985; 107: 1496
  • 26 Ibrahim MR, Jorgensen WL. J. Am. Chem. Soc. 1989; 111: 819
  • 27 Fujio M, Uchida M, Okada A, Alam MA, Fujiyama R, Siehl H.-U, Tsuno Y. Bull. Chem. Soc. Jpn. 2005; 78: 1834
  • 28 Fujio M, Umezaki Y, Alam MA, Kikukawa K, Fujiyama R, Tsuno Y. Bull. Chem. Soc. Jpn. 2006; 79: 1091
  • 29 Fujio M, Alam MA, Umezaki Y, Kikukawa K, Fujiyama R, Tsuno Y. Bull. Chem. Soc. Jpn. 2007; 80: 2378
  • 30 Fujiyama R, Alam MA, Shiiyama A, Munechika T, Fujio M, Tsuno Y. J. Phys. Org. Chem. 2010; 23: 819
  • 31 Zhang W, Stone JA, Brook MA, McGibbon GA. J. Am. Chem. Soc. 1996; 118: 5764
  • 32 Müller T, Margraf D, Syha Y. J. Am. Chem. Soc. 2005; 127: 10852
  • 33 Müller T, Juhasz M, Reed CA. Angew. Chem. Int. Ed. 2004; 43: 1543
  • 34 Klaer A, Müller T. J. Phys. Org. Chem. 2010; 23: 1043
  • 35 Danheiser RL, Carini DJ, Basak A. J. Am. Chem. Soc. 1981; 103: 1604
  • 36 Becker DA, Danheiser RL. J. Am. Chem. Soc. 1989; 111: 389
  • 37 Danheiser RL, Kwasigroch CA, Tsai YM. J. Am. Chem. Soc. 1985; 107: 7233
  • 38 Danheiser RL, Stoner EJ, Koyama H, Yamashita DS, Klade CA. J. Am. Chem. Soc. 1989; 111: 4407
  • 39 Danheiser RL, Becker DA. Heterocycles 1987; 25: 277
  • 40 Saborit GV, Cativiela C, Jiménez AI, Bonjoch J, Bradshaw B. Beilstein J. Org. Chem. 2018; 14: 2597
  • 41 Yadav VK, Sriramurthy V. Org. Lett. 2004; 6: 4495
  • 42 Onnagawa T, Yamazaki M, Yoshimura T, Matsuo JI. Synlett 2018; 29: 2717
  • 43 Dudnik AS, Xia Y, Li Y, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 7645
  • 44 Pornet J, Miginiac L, Jaworski K, Randrianoelina B. Organometallics 1985; 4: 333
  • 45 Danheiser RL, Dixon BR, Gleason RW. J. Org. Chem. 1992; 57: 6094
  • 46 Evans DA, Aye Y. J. Am. Chem. Soc. 2007; 129: 9606
  • 47 Rooke DA, Ferreira EM. J. Am. Chem. Soc. 2010; 132: 11926
  • 48 Barczak NT, Rooke DA, Menard ZA, Ferreira EM. Angew. Chem. Int. Ed. 2013; 52: 7579
  • 49 Allegretti PA, Ferreira EM. Org. Lett. 2011; 13: 5924
  • 50 Puriņš M, Mishnev A, Turks M. J. Org. Chem. 2019; 84: 3595
  • 51 González J, Santamaría J, Ballesteros A. Angew. Chem. Int. Ed. 2015; 54: 13678
  • 52 Shiba T, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2013; 135: 13636
  • 53 Quan Y, Zhang J, Xie Z. J. Am. Chem. Soc. 2013; 135: 18742
  • 54 Kazem Shiroodi R, Rivera Vera CI, Dudnik AS, Gevorgyan V. Tetrahedron Lett. 2015; 56: 3251
  • 55 Li T, Zhang L. J. Am. Chem. Soc. 2018; 140: 17439
  • 56 Kanno H, Nakamura K, Noguchi K, Shibata Y, Tanaka K. Org. Lett. 2016; 18: 1654
  • 57 Yeung C.-F, Chung L.-H, Lo H.-S, Chiu C.-H, Cai J, Wong C.-Y. Organometallics 2015; 34: 1963
  • 58 McGee P, Bellavance G, Korobkov I, Tarasewicz A, Barriault L. Chem. Eur. J. 2015; 21: 9662
  • 59 Liedtke R, Harhausen M, Fröhlich R, Kehr G, Erker G. Org. Lett. 2012; 14: 1448
  • 60 Liedtke R, Tenberge F, Daniliuc CG, Kehr G, Erker G. J. Org. Chem. 2015; 80: 2240
  • 61 Boussonnière A, Pan X, Geib SJ, Curran DP. Organometallics 2013; 32: 7445
  • 62 Knölker H.-J, Jones PG, Pannek J.-B. Synlett 1990; 429
  • 63 Knölker H.-J, Foitzik N, Graf R, Goesmann H. Angew. Chem. Int. Ed. 1993; 32: 1081
  • 64 Knölker H.-J, Baum G, Graf R. Angew. Chem. Int. Ed. 1994; 33: 1612
  • 65 Knölker H.-J, Graf R. Synlett 1994; 131
  • 66 Knölker H.-J, Wanzl G. Synlett 1995; 378
  • 67 Knölker H.-J, Foitzik N, Goesmann H, Graf R, Jones PG, Wanzl G. Chem. Eur. J. 1997; 3: 538
  • 68 Danheiser RL, Takahashi T, Bertók B, Dixon BR. Tetrahedron Lett. 1993; 34: 3845
  • 69 Monti H, Audran G, Monti J.-P, Léandri G. Synlett 1994; 403
  • 70 Brengel GP, Rithner C, Meyers AI. J. Org. Chem. 1994; 59: 5144
  • 71 Ball-Jones NR, Badillo JJ, Tran NT, Franz AK. Angew. Chem. Int. Ed. 2014; 53: 9462
  • 72 Okamoto K, Tamura E, Ohe K. Angew. Chem. Int. Ed. 2014; 53: 10195
  • 73 Li J, Sun C, Demerzhan S, Lee D. J. Am. Chem. Soc. 2011; 133: 12964
  • 74 Fang R, Yang L, Wang Q. Organometallics 2012; 31: 4020
  • 75 Suginome M, Takama A, Ito Y. J. Am. Chem. Soc. 1998; 120: 1930