Synthesis 2020; 52(15): 2127-2146
DOI: 10.1055/s-0039-1690874
review
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Synthesis of Ethers by Catalytic Alkene Hydro­alkoxy­lation

a  School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong District, Shanghai, 201210, P. R. of China   Email: lizhi@shanghaitech.edu.cn
b  Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. of China
c  University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. of China
,
Zhi Li
a  School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong District, Shanghai, 201210, P. R. of China   Email: lizhi@shanghaitech.edu.cn
› Author Affiliations
Financial support for this work was generously provided by the National Natural Science Foundation of China (Grant No. 21673141), Science­ and Technology Commission of the Shanghai Municipality (STCSM) (Grant No. 17JC1404000) and ShanghaiTech University start-up funding.
Further Information

Publication History

Received: 11 January 2020

Accepted after revision: 09 March 2020

Publication Date:
14 April 2020 (online)


Abstract

Many chiral ethers have important physiological activities. Although many asymmetric hydroalkoxylations of olefins with alcohols or phenols have been developed to make chiral ethers, challenges still remain in achieving high reactivity and selectivity over an ever-increasing diversity of alkenes and alcohols. In this review, recent developments on catalytic asymmetric alkene hydroalkoxylations are summarized based on the substitution patterns of alkenes.

1 Introduction

2 Asymmetric Hydroalkoxylation of Non-Activated Alkenes

2.1 Intramolecular Additions

2.2 Intermolecular Additions

3 Asymmetric Hydroalkoxylation of Enol Ethers

3.1 Intramolecular Additions

3.2 Intermolecular Additions

4 Asymmetric Hydroalkoxylation of α,β-Unsaturated Carbonyl Compounds

4.1 α,β-Unsaturated Ketones and Aldehydes as Substrates

4.2 α,β-Unsaturated Esters, Amides and Carboxylic Acids as Substrates

5 Asymmetric Hydroalkoxylation of Allenes

5.1 Intramolecular Additions

5.2 Intermolecular Additions

6 Conclusion

 
  • References

    • 1a Bartlett PA. Tetrahedron 1980; 36: 2
    • 1b Cardillo G, Orena M. Tetrahedron 1990; 46: 3321
    • 1c Aho JE, Pihko PM, Rissa TK. Chem. Rev. 2005; 105: 4406
    • 1d Meng S, Tang GL, Pan HX. ChemBioChem 2018; 19: 2002
    • 2a Rigotti A. Mol. Aspects Med. 2007; 28: 423
    • 2b Eggersdorfer M, Laudert D, Letinois U, McClymont T, Medlock J, Netscher T, Bonrath W. Angew. Chem. Int. Ed. 2012; 51: 12960
    • 2c Galli F, Azzi A, Birringer M, Cook-Mills JM, Eggersdorfer M, Frank J, Cruciani G, Lorkowski S, Ozer NK. Free Radical Biol. Med. 2017; 102: 16
    • 3a Xu ZQ, Hollingshead MG, Borgel S, Elder C, Khilevich A, Flavin MT. Bioorg. Med. Chem. Lett. 1999; 9: 133
    • 3b Palil AD, Freyer AJ, Eggleston DS, Haltiwanger RC, Bean MF, Taylor PB, Caranfa MJ, Breen AL, Bartus HR, Johnson RK, Hertzberg RP, Westley JW. J. Med. Chem. 1993; 36: 4131
    • 4a Nakamura S, Ishihara K, Yamamoto H. J. Am. Chem. Soc. 2000; 122: 8131
    • 4b Yoder RA, Johnston JN. Chem. Rev. 2005; 105: 4730
    • 4c Nakanishi KS, Kamat VY, Chuo F, Kubo I. Heterocycles 1981; 15: 1163
    • 5a Lee D, Bhat KP, Fong HH, Farnsworth NR, Pezzuto JM, Kinghorn AD. J. Nat. Prod. 2001; 64: 1286
    • 5b Na M, Jang J, Njamen D, Mbafor JT, Fomum ZT, Kim BY, Oh WK, Ahn JS. J. Nat. Prod. 2006; 69: 1572
    • 6a Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 6b Deng WP, Zhang HX, Xue LQ, Zhang QH, Wang Y. Chin. J. Catal. 2015; 36: 1440
    • 6c Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 6d Park S. Chem. Asian J. 2019; 14: 2048
    • 8a Barreiro EM, Adrio LA, Hii KK. M, Brazier JB. Eur. J. Org. Chem. 2013; 1027
    • 8b Munoz MP. Chem. Soc. Rev. 2014; 43: 3164
    • 8c Lohr TL, Li Z, Marks TJ. Acc. Chem. Res. 2016; 49: 824
    • 8d Bezzenine-Lafollee S, Gil R, Prim D, Hannedouche J. Molecules 2017; 22: 1901
    • 9a Wabnitz TC, Spencer JB. Org. Lett. 2003; 5: 2141
    • 9b Hintermann L. Recent Developments in Metal-Catalyzed Additions of Oxygen Nucleophiles to Alkenes and Alkynes. In C–X Bond Formation. Vigalok A. Springer-Verlag; Berlin: 2010: 123-155
    • 9c Nising CF, Brase S. Chem. Soc. Rev. 2012; 41: 988
  • 10 Stocker A, Woggon W.-D, Rüttimann A. Helv. Chim. Acta 1993; 76: 1729
  • 11 Stocker A, Derungs G, Woggon W.-D, Netscher T, Rüttimann A, Müller RK, Schneider H, Todaro LJ. Helv. Chim. Acta 1994; 77: 1721
  • 12 Stocker A, Fretz H, Frick H, Ruttimann A, Woggon WD. Bioorg. Med. Chem. 1996; 4: 1129
  • 13 Gao SS, Garcia-Borras M, Barber JS, Hai Y, Duan A, Garg NK, Houk KN, Tang Y. J. Am. Chem. Soc. 2017; 139: 3639
  • 14 Ishihara K, Nakamura S, Yamamoto H. J. Am. Chem. Soc. 1999; 121: 4906
  • 15 Ishihara K, Ishibashi H, Yamamoto H. J. Am. Chem. Soc. 2002; 124: 3647
    • 16a Ishibashi H, Ishihara K, Yamamoto H. J. Am. Chem. Soc. 2004; 126: 11122
    • 16b Kumazawa K, Ishihara K, Yamamoto H. Org. Lett. 2004; 6: 2551
    • 16c Uyanik M, Ishihara K, Yamamoto H. Bioorg. Med. Chem. 2005; 13: 5055
  • 17 Sakakura A, Sakuma M, Ishihara K. Org. Lett. 2011; 13: 3130
  • 18 Schluter J, Blazejak M, Boeck F, Hintermann L. Angew. Chem. Int. Ed. 2015; 54: 4014
  • 19 Tsuji N, Kennemur JL, Buyck T, Lee S, Prevost S, Kaib PS. J, Bykov D, Fares C, List B. Science 2018; 359: 1501
  • 20 Mulholland DA, McFarland K, Randrianarivelojosia M. Biochem. Syst. Ecol. 2006; 34: 365
  • 21 Miller Y, Miao L, Hosseini AS, Chemler SR. J. Am. Chem. Soc. 2012; 134: 12149
  • 22 Murayama H, Nagao K, Ohmiya H, Sawamura M. Org. Lett. 2015; 17: 2039
  • 23 Shigehisa H, Hayashi M, Ohkawa H, Suzuki T, Okayasu H, Mukai M, Yamazaki A, Kawai R, Kikuchi H, Satoh Y, Fukuyama A, Hiroya K. J. Am. Chem. Soc. 2016; 138: 10597
  • 24 Discolo CA, Touney EE, Pronin SV. J. Am. Chem. Soc. 2019; 141: 17527
  • 25 Yang ZB, Li H, Li SJ, Zhang MT, Luo SZ. Org. Chem. Front. 2017; 4: 1037
  • 26 Romero NA, Nicewicz DA. J. Am. Chem. Soc. 2014; 136: 17024
  • 27 Inoue Y, Okano T, Yamasaki N, Tai A. J. Chem. Soc., Chem. Commun. 1993; 718
    • 28a Asaoka S, Kitazawa T, Wada T, Inoue Y. J. Am. Chem. Soc. 1999; 121: 8486
    • 28b Asaoka S, Wada T, Inoue Y. J. Am. Chem. Soc. 2003; 125: 3008
    • 29a Saito R, Kaneda M, Wada T, Katoh A, Inoue Y. Chem. Lett. 2002; 31: 860
    • 29b Nishiyama Y, Kaneda M, Saito R, Mori T, Wada T, Inoue Y. J. Am. Chem. Soc. 2004; 126: 6568
    • 29c Nishiyama Y, Kaneda M, Asaoka S, Saito R, Mori T, Wada T, Inoue Y. J. Phys. Chem. A 2007; 111: 13432
    • 29d Nishiyama Y, Wada T, Mori T, Inoue Y. Chem. Lett. 2007; 36: 1488
    • 29e Nishiyama Y, Wada T, Asaoka S, Mori T, McCarty TA, Kraut ND, Bright FV, Inoue Y. J. Am. Chem. Soc. 2008; 130: 7526
    • 29f Nishiyama Y, Wada T, Kakiuchi K, Inoue Y. J. Org. Chem. 2012; 77: 5681
  • 30 Sevov CS, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 9303
  • 31 Coric I, List B. Nature 2012; 483: 315
    • 32a Sun Z, Winschel GA, Borovika A, Nagorny P. J. Am. Chem. Soc. 2012; 134: 8074
    • 32b Khomutnyk YY, Arguelles AJ, Winschel GA, Sun Z, Zimmerman PM, Nagorny P. J. Am. Chem. Soc. 2016; 138: 444
  • 33 Nagano H, Katsuki T. Chem. Lett. 2002; 782
    • 34a Nising CF, Brase S. Chem. Soc. Rev. 2008; 37: 1218
    • 34b del Pozo C, Sánchez-Roselló M, Miró J. Synthesis 2017; 49: 2787
    • 35a Wong E, Moustafa E. Tetrahedron Lett. 1966; 7: 3021
    • 35b Moustafa E. Phytochemistry 1967; 6: 625
    • 35c Hahlbrock K, Zilg H, Grisebach H. Eur. J. Biochem. 1970; 15: 13
    • 35d Bednar RA, Hadcock JR. J. Biol. Chem. 1988; 263: 9582
    • 36a Maruyama K, Tamanaka K, Nishinaga A, Inada A, Nakanishi T. Tetrahedron Lett. 1989; 30: 4145
    • 36b Patonay T, Varma RS, Vass A, Levai A, Dudas J. Tetrahedron Lett. 2001; 42: 1403
    • 36c Tanaka K, Sugino T. Green Chem. 2001; 3: 133
    • 36d Chandrasekhar S, Vijeender K, Reddy KV. Tetrahedron Lett. 2005; 46: 6991
    • 37a Ishikawa T, Oku Y, Tanaka T, Kumamoto T. Tetrahedron Lett. 1999; 40: 3777
    • 37b Tanaka T, Kumamoto T, Ishikawa T. Tetrahedron: Asymmetry 2000; 11: 4633
    • 37c Tanaka T, Kumamoto T, Ishikawa T. Tetrahedron Lett. 2000; 41: 10229
    • 37d Sekino E, Kumamoto T, Tanaka T, Ikeda T, Ishikawa T. J. Org. Chem. 2004; 69: 2760
    • 38a Dittmer C, Raabe G, Hintermann L. Eur. J. Org. Chem. 2007; 5886
    • 38b Hintermann L, Ackerstaff J, Boeck F. Chem. Eur. J. 2013; 19: 2311
  • 39 Hintermann L, Dittmer C. Eur. J. Org. Chem. 2012; 5573
    • 40a Biddle MM, Lin M, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 3830
    • 40b Farmer RL, Biddle MM, Nibbs AE, Huang X, Bergan RC, Scheidt KA. ACS Med. Chem. Lett. 2010; 1: 400
  • 41 Wang L, Liu X, Dong Z, Fu X, Feng X. Angew. Chem. Int. Ed. 2008; 47: 8670
  • 42 Wang HF, Xiao H, Wang XW, Zhao G. Tetrahedron 2011; 67: 5389
  • 43 Feng Z, Zeng M, Xu Q, You S. Chin. Sci. Bull. 2010; 55: 1723
  • 44 Díez D, Núñez M, Benéitez A, Moro R, Marcos I, Basabe P, Broughton H, Urones J. Synlett 2009; 390
  • 45 Phillips EM, Riedrich M, Scheidt KA. J. Am. Chem. Soc. 2010; 132: 13179
  • 46 Asano K, Matsubara S. J. Am. Chem. Soc. 2011; 133: 16711
    • 47a Fukata Y, Miyaji R, Okamura T, Asano K, Matsubara S. Synthesis 2013; 45: 1627
    • 47b Miyaji R, Asano K, Matsubara S. Org. Biomol. Chem. 2014; 12: 119
    • 47c Asano K, Matsubara S. Synthesis 2018; 50: 4243
  • 48 McGarraugh PG, Brenner-Moyer SE. Org. Lett. 2011; 13: 6460
  • 49 McGarraugh PG, Johnston RC, Martinez-Munoz A, Cheong PH, Brenner-Moyer SE. Chem. Eur. J. 2012; 18: 10742
  • 50 Lu YP, Zou G, Zhao G. ACS Catal. 2013; 3: 1356
  • 51 Jadhav AP, Oh JA, Hwang IS, Yan H, Song CE. Org. Lett. 2018; 20: 5319
  • 52 Gu Q, Rong ZQ, Zheng C, You SL. J. Am. Chem. Soc. 2010; 132: 4056
  • 53 Ratnikov MO, Farkas LE, Doyle MP. J. Org. Chem. 2012; 77: 10294
  • 54 Wu W, Li X, Huang H, Yuan X, Lu J, Zhu K, Ye J. Angew. Chem. Int. Ed. 2013; 52: 1743
  • 55 Parhi B, Gurjar J, Pramanik S, Midya A, Ghorai P. J. Org. Chem. 2016; 81: 4654
  • 56 Reddy RR, Panda S, Ghorai P. J. Org. Chem. 2019; 84: 5357
  • 57 Kano T, Tanaka Y, Maruoka K. Tetrahedron 2007; 63: 8658
  • 58 Megens RP, Roelfes G. Chem. Commun. 2012; 48: 6366
  • 59 Merschaert A, Delbeke P, Daloze D, Dive G. Tetrahedron Lett. 2004; 45: 4697
    • 60a Saito N, Ryoda A, Nakanishi W, Kumamoto T, Ishikawa T. Eur. J. Org. Chem. 2008; 2759
    • 60b Ishikawa T, Tokunou S, Nakanishi W, Kagawa N, Kumamoto T. Heterocycles 2012; 84: 1045
  • 61 Kobayashi Y, Taniguchi Y, Hayama N, Inokuma T, Takemoto Y. Angew. Chem. Int. Ed. 2013; 52: 11114
  • 62 Kobayashi Y, Kuramoto R, Takemoto Y. Beilstein J. Org. Chem. 2015; 11: 2654
  • 63 Azuma T, Murata A, Kobayashi Y, Inokuma T, Takemoto Y. Org. Lett. 2014; 16: 4256
  • 64 Hayama N, Kuramoto R, Foldes T, Nishibayashi K, Kobayashi Y, Papai I, Takemoto Y. J. Am. Chem. Soc. 2018; 140: 12216
    • 65a Nishina N, Yamamoto Y. Tetrahedron 2009; 65: 1799
    • 65b Munoz MP. Org. Biomol. Chem. 2012; 10: 3584
    • 65c Webster S, Sutherland DR, Lee AL. Chem. Eur. J. 2016; 22: 18593
    • 65d Harris RJ, Carden RG, Duncan AN, Widenhoefer RA. ACS Catal. 2018; 8: 8941
  • 66 Zhang Z, Liu C, Kinder RE, Han X, Qian H, Widenhoefer RA. J. Am. Chem. Soc. 2006; 128: 9066
  • 67 Zhang Z, Widenhoefer RA. Angew. Chem. Int. Ed. 2007; 46: 283
    • 68a Brown TJ, Weber D, Gagne MR, Widenhoefer RA. J. Am. Chem. Soc. 2012; 134: 9134
    • 68b Brooner RE. M, Brown TJ, Chee MA, Widenhoefer RA. Organometallics 2016; 35: 2014
  • 69 Hamilton GL, Kang EJ, Mba M, Toste FD. Science 2007; 317: 496
  • 70 Aikawa K, Kojima M, Mikami K. Adv. Synth. Catal. 2010; 352: 3131
    • 71a Arbour JL, Rzepa HS, Contreras-Garcia J, Adrio LA, Barreiro EM, Hii KK. Chem. Eur. J. 2012; 18: 11317
    • 71b Barreiro EM, Broggini DF. D, Adrio LA, White AJ. P, Schwenk R, Togni A, Hii KK. Organometallics 2012; 31: 3745
  • 72 Malik G, Ferry A, Guinchard X. Molecules 2015; 20: 21082
  • 73 d’Herouville FL, Millet A, Scalone M, Michelet V. Synthesis 2016; 48: 3309
  • 74 Ito S, Nanko M, Shinozaki T, Kojima M, Aikawa K, Mikami K. Chem. Asian J. 2016; 11: 823
  • 75 Ilg MK, Wolf LM, Mantilli L, Fares C, Thiel W, Furstner A. Chem. Eur. J. 2015; 21: 12279
  • 76 Wang Z, Nicolini C, Hervieu C, Wong YF, Zanoni G, Zhang L. J. Am. Chem. Soc. 2017; 139: 16064
  • 77 Wang Y, Zheng K, Hong R. J. Am. Chem. Soc. 2012; 134: 4096
  • 78 Cao KS, Zheng WH. Tetrahedron: Asymmetry 2015; 26: 1150
  • 79 Zi W, Toste FD. Angew. Chem. Int. Ed. 2015; 54: 14447
  • 80 Lim W, Kim J, Rhee YH. J. Am. Chem. Soc. 2014; 136: 13618
  • 81 Kim M, Kang S, Rhee YH. Angew. Chem. Int. Ed. 2016; 55: 9733
  • 82 Jiang L, Jia T, Wang M, Liao J, Cao P. Org. Lett. 2015; 17: 1070
  • 83 Liu Z, Breit B. Angew. Chem. Int. Ed. 2016; 55: 8440