Synthesis 2019; 51(23): 4359-4365
DOI: 10.1055/s-0039-1690694
psp
© Georg Thieme Verlag Stuttgart · New York

Scalable Synthesis of Acridinium Catalysts for Photoredox Deuterations

Bouthayna Zilate
,
,
Lukas Schneider
,
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland   Email: [email protected]
› Author Affiliations
We gratefully acknowledge the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) and the Department of Chemistry of the University of Basel for financial support.
Further Information

Publication History

Received: 23 August 2019

Accepted after revision: 12 September 2019

Publication Date:
21 October 2019 (online)


Abstract

The continuous development of photocatalytic methods incentivizes the design of organic catalysts to complement the frequently used and precious polypyridyl transition metal systems. Herein, a scalable synthesis of suitable acridinium dyes and their application in photoredox deuterations are described. The acridinium catalysts, prepared on multi-gram scale, allowed the deuteration of a pharmaceutically relevant scaffold in high yield and selectivity under mild conditions.

 
  • References

    • 1a Ohkubo K, Mizushima K, Iwata R, Souma K, Suzuki N, Fukuzumi S. Chem. Commun. 2010; 46: 601
    • 1b Kotani H, Ohkubo K, Fukuzumi S. J. Am. Chem. Soc. 2004; 126: 15999
    • 3a Fischer C, Sparr C. Angew. Chem. Int. Ed. 2018; 57: 2436
    • 3b Fischer C, Sparr C. Synlett 2018; 29: 2176
    • 3c Fischer C, Sparr C. Tetrahedron 2018; 74: 5486
    • 4a White AR, Wang L, Nicewicz DA. Synlett 2019; 30: 827

    • Other approaches:
    • 4b Gini A, Uygur M, Rigotti T, Alemán J, García Mancheño O. Chem. Eur. J. 2018; 24: 12509
    • 4c Bernthsen A, Bender F. Ber. Dtsch. Chem. Ges. 1883; 16: 1802
  • 5 Benniston AC, Elliott KJ, Harrington RW, Clegg W. Eur. J. Org. Chem. 2009; 253
  • 7 Uchiyama M, Matsumoto Y, Nakamura S, Ohwada T, Kobayashi N, Yamashita N, Matsumiya A, Sakamoto T. J. Am. Chem. Soc. 2004; 126: 8755
  • 8 Rzymski T, Zarebski A, Dreas A, Osowska K, Kucwaj K, Fogt J, Cholody M, Galezowski M, Czardybon W, Horvath R, Wiklik K, Milik K, Brózka K. Patent WO072435, 2014
    • 9a Klapars A, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 14844
    • 9b Jiang X, Wang C, Wei Y, Xue D, Liu Z, Xiao J. Chem. Eur. J. 2014; 20: 58
    • 9c Kowada T, Yamaguchi S, Fujinaga H, Ohe K. Tetrahedron 2011; 67: 3105
    • 10a Zhang P, Cedilote M, Cleary TP, Pierce ME. Tetrahedron Lett. 2007; 48: 8659
    • 10b Hameed PS, Patil V, Solapure S, Sjarma U, Madhavapeddi P, Raichurkar A, Chinnapattu M, Manjrekar P, Shanbhag G, Puttur J, Shinde V, Menasinakai S, Rudrapatana S, Achar V, Awasthy D, Nandishaiah R, Humnabadkar V, Ghosh A, Narayan C, Ramya VK, Kaur P, Sharma S, Werngren J, Hoffner S, Panduga V, Kumar CN. N, Reddy J, Kumar MK. N, Ganguly S, Bharath S, Bheemarao U, Mukherjee K, Arora U, Gaonkar S, Coulson M, Waterson D, Sambandamurthy VK, de Sousa SM. J. Med. Chem. 2014; 57: 4889
  • 11 Loh YY, Nagao K, Hoover AJ, Hesk D, Rivera NR, Colletti SL, Davies IW, MacMillan DW. C. Science 2017; 358: 1182
  • 12 Fischer, C.; Kerzig, C.; Zilate, B.; Wenger, O.; Sparr, C. manuscript submitted.
  • 13 Xu S, Haeffner F, Li B, Zakharov LN, Liu S.-Y. Angew. Chem. Int. Ed. 2014; 53: 6795
  • 14 The precipitate was slowly formed after the addition of nitric acid and can be either grey or yellow (it will turn eventually yellow after drying under vacuum).
  • 15 The Celite was washed with EtOAc.
  • 16 The reaction mixture turns beige immediately and the color remains until the end of the reaction.
  • 17 After heating up to 80 °C, a hot filtration allowed to remove insoluble red solids, while the precipitated product could be isolated at RT.