Synthesis 2020; 52(08): 1253-1265
DOI: 10.1055/s-0039-1690219
special topic
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed [4+2] Annulation of Aryl and Alkenyl Carboxamides with 1,3-Dienes via C–H Functionalization: Synthesis of 3,4-Dihydroisoquinolones and 5,6-Dihydropyridinones

Manman Sun
,
Jinshan Li
,
Weida Chen
,
Haijian Wu
,
Jianguo Yang
,
Zhiming Wang
This work was supported by the Natural Science Foundation of Zhejiang Province (Grant No. LY18B020002) and the Nurturing Project, Taizhou University (Grant No. 2018PY049).
Further Information

Publication History

Received: 29 August 2019

Accepted after revision: 04 October 2019

Publication Date:
24 October 2019 (online)


Published as part of the Special Topic Domino C–H Functionalization Reaction/Cascade Catalysis

Abstract

Palladium-catalyzed [4+2] annulation of aryl and alkenyl carboxamides with 1,3-dienes via C–H functionalization is developed using air as the terminal oxidant. The method demonstrates good functional group tolerance and high stereoselectivity, affording a series of 3,4-dihydroisoquinolones and 5,6-dihydropyridinones in yields of up to 99%.

Supporting Information

 
  • References

    • 1a Tschammer N. Bioorg. Med. Chem. Lett. 2014; 24: 3744
    • 1b Zhao G, Kwon C, Bisaha SN, Stein PD, Rossi KA, Cao X, Ung T, Wu G, Hung C.-P, Malmstrom SE, Zhang G, Qu Q, Gan J, Keim WJ, Cullen MJ, Rohrbach KW, Devenny J, Pelleymounter MA, Miller KJ, Robl JA. Bioorg. Med. Chem. Lett. 2013; 23: 3914
    • 1c Zhang J.-S, Men-Olivier LL, Massiot G. Phytochemistry 1995; 39: 439
    • 1d Liu X, Wang Y, Zhang X, Gao Z, Zhang S, Shi P, Zhang X, Song L, Hendrickson H, Zhou D, Zheng G. Bioorg. Med. Chem. 2018; 26: 3925
    • 1e Torres M, Gil S, Parra M. Curr. Org. Chem. 2005; 9: 1757
    • 2a Jin Z. Nat. Prod. Rep. 2005; 22: 111
    • 2b Couture A, Deniau E, Grandclaudon P, Lebrun S. Tetrahedron: Asymmetry 2003; 14: 1309
    • 2c Tamura R, Yamada Y, Nakao Y, Hiyama T. Angew. Chem. Int. Ed. 2012; 51: 5679
    • 2d Chrzanowska M, Grajewska A, Rozwadowska MD. Chem. Rev. 2016; 116: 12369
    • 3a Kralj A, Wetzel A, Mahmoudian S, Stamminger T, Tschammer N, Heinrich MR. Bioorg. Med. Chem. Lett. 2011; 21: 5446
    • 3b Beck B, Picard A, Herdtweck E, Dömling A. Org. Lett. 2004; 6: 39

      For selected reviews, see:
    • 4a Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 4b Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 4c Thansandote P, Lautens M. Chem. Eur. J. 2009; 15: 5874
    • 4d Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016

      For selected examples, see:
    • 5a Zhu R.-Y, Farmer ME, Chen Y.-Q, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 5b Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 5c Zhang M, Zhang Y, Jie X, Zhao H, Li G, Su W. Org. Chem. Front. 2014; 1: 843
    • 5d Song S, Lu P, Liu H, Cai S.-H, Feng C, Loh T.-P. Org. Lett. 2017; 19: 2869
    • 5e Nagamoto M, Yorimitsu H, Nishimura T. Org. Lett. 2018; 20: 828
    • 6a Rakshit S, Grohmann C, Besset T, Glorius F. J. Am. Chem. Soc. 2011; 133: 2350
    • 6b Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
    • 6c Hyster TK, Knörr L, Ward TR, Rovis T. Science 2012; 338: 500
    • 6d Cui S, Zhang Y, Wu Q. Chem. Sci. 2013; 4: 3421
    • 6e Hyster TK, Dalton DM, Rovis T. Chem. Sci. 2015; 6: 254
    • 6f Wu S, Zeng R, Fu C, Yu Y, Zhang X, Ma S. Chem. Sci. 2015; 6: 2275
    • 6g Wang H, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 7318
    • 6h Ye B, Cramer N. Science 2012; 338: 504
    • 6i Jia Z.-J, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
    • 6j Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. Angew. Chem. Int. Ed. 2018; 57: 7714
  • 7 Ozols K, Jang Y.-S, Cramer N. J. Am. Chem. Soc. 2019; 141: 5675
    • 8a Wang F, Song G, Li X. Org. Lett. 2010; 12: 5430
    • 8b Zhu C, Falck JR. Org. Lett. 2011; 13: 1214
    • 8c Li D.-D, Yuan T.-T, Wang G.-W. Chem. Commun. 2011; 47: 12789
    • 8d Youn SW, Ko TY, Kim YH, Kim YA. Org. Lett. 2018; 20: 7869
  • 9 Wrigglesworth JW, Cox B, Lloyd-Jones GC, Booker-Milburn KI. Org. Lett. 2011; 13: 5326
  • 10 Xia X.-F, Wang Y.-Q, Zhang L.-L, Song X.-R, Liu X.-Y, Liang Y.-M. Chem. Eur. J. 2014; 20: 5087
    • 11a Watt MS, Booker-Milburn KI. Org. Lett. 2016; 18: 5716
    • 11b Zhang T, Shen H.-C, Xu J.-C, Fan T, Han Z.-Y, Gong L.-Z. Org. Lett. 2019; 21: 2048
    • 12a Zhu Y, Cornwall RG, Du H, Zhao B, Shi Y. Acc. Chem. Res. 2014; 47: 3665
    • 12b Wu Z, Zhang W. Chin. J. Org. Chem. 2017; 37: 2250
    • 12c Xiong Y, Sun Y, Zhang G. Tetrahedron Lett. 2018; 59: 347
    • 12d Wu X, Gong L.-Z. Synthesis 2019; 51: 122
    • 13a Houlden CE, Bailey CD, Ford JG, Gagné MR, Lloyd-Jones GC, Booker-Milburn KI. J. Am. Chem. Soc. 2008; 130: 10066
    • 13b Bai L, Wang Y, Ge Y, Liu J, Luan X. Org. Lett. 2017; 19: 1734
    • 13c Chen S.-S, Wu M.-S, Han Z.-Y. Angew. Chem. Int. Ed. 2017; 56: 6641
    • 13d Son J.-Y, Kim H, Jeon WH, Baek Y, Seo B, Um K, Lee K, Lee PH. Adv. Synth. Catal. 2017; 359: 3194
    • 13e Sun Y, Zhang G. Chin. J. Chem. 2018; 36: 708
    • 14a Boele MD. K, van Strijdonck GP. F, de Vries AH. M, Kamer PC. J, de Vries JG, van Leeuwen PW. N. M. J. Am. Chem. Soc. 2002; 124: 1586
    • 14b Wang G.-W, Yuan T.-T, Li D.-D. Angew. Chem. Int. Ed. 2011; 50: 1380
  • 15 Iosub AV, Stahl SS. J. Am. Chem. Soc. 2015; 137: 3454
  • 16 CCDC 1912544 (3ba) and CCDC 1912545 (3ai) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 17a Yang J, Mo H, Wu H, Cao D, Pan C, Wang Z. Chem. Commun. 2018; 54: 1213
    • 17b Yang J, Mo H, Jin X, Cao D, Wu H, Chen D, Wang Z. J. Org. Chem. 2018; 83: 2592
  • 18 Knowles H, Parsons AF, Pettifer RM. Synlett 1997; 271
  • 19 Braunstein H, Langevin S, Khim M, Adamson J, Hovenkotter K, Kotlarz L, Mansker B, Beng TK. Org. Biomol. Chem. 2016; 14: 8864
  • 20 Murashige R, Ohtsuka Y, Sagisawa K, Shiraishi M. Tetrahedron Lett. 2015; 56: 3410
    • 21a Péron F, Fossey C, Cailly T, Fabis F. Org. Lett. 2012; 14: 1827
    • 21b Ton TM. U, Tejo C, Tania S, Chang JW. W, Chan PW. H. J. Org. Chem. 2011; 76: 4894
    • 21c Zhang Y, Ye W, Leng X, He Y, Zhang H, Xiao X. Tetrahedron Lett. 2016; 57: 4203
    • 21d Sarma MJ, Phukan P. Synth. Commun. 2016; 46: 257
    • 21e Yang L, Li S, Cai L, Ding Y, Fu L, Cai Z, Ji H, Li G. Org. Lett. 2017; 19: 2746
    • 22a Qiao C, Chen A, Gao B, Liu Y, Huang H. Chin. J. Chem. 2018; 36: 929
    • 22b Zhao D, Lied F, Glorius F. Chem. Sci. 2014; 5: 2869
    • 22c Mundal DA, Lutz KE, Thomson RJ. Org. Lett. 2009; 11: 465
    • 22d Rodriguez J, Waegell B. Synthesis 1988; 534
    • 22e Bernardi L, López-Cantarero J, Niess B, Jørgensen KA. J. Am. Chem. Soc. 2007; 129: 5772
    • 22f Wang D, Xue X, Houk KN, Shi Z. Angew. Chem. Int. Ed. 2018; 57: 16861
    • 22g Timsina YN, Biswas S, RajanBabu TV. J. Am. Chem. Soc. 2018; 140: 2700
    • 22h Gabbutt CD, Heron BM, Kilner C, Kolla SB. J. Chem. Res. 2011; 35: 531
  • 23 Zhou D, Gross JL, Adedoyin AB, Aschmies SB, Brennan J, Bowlby M, Di L, Kubek K, Platt BJ, Wang Z, Zhang G, Brandon N, Comery TA, Robichaud AJ. J. Med. Chem. 2012; 55: 2452
  • 24 Saito K, Moriya Y, Akiyama T. Org. Lett. 2015; 17: 3202